кривая удлинение-напряжение - definição. O que é кривая удлинение-напряжение. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é кривая удлинение-напряжение - definição

МЕРА ВНУТРЕННИХ СИЛ, ВОЗНИКАЮЩИХ В ДЕФОРМИРУЕМОМ ТЕЛЕ, ПОД ВЛИЯНИЕМ РАЗЛИЧНЫХ ФАКТОРОВ
Нормальное механическое напряжение; Касательное механическое напряжение; Напряжение (механическое); Механические напряжения; Напряжение (механика)
  • поляризационный фильтр]] (нижний рисунок).
  • Рисунок 2.2. Вектор напряжений, действующий на плоскость с нормальным единичным вектором '''n'''.
Примечание о знаках: тетраэдр образован разрезанием параллелепипеда вдоль произвольной плоскости с нормалью '''n'''. Сила, действующая на плоскость с нормалью '''n''', это реакция другой части параллелепипеда и имеет противоположный знак.
  • Рисунок 2.3 Компоненты тензора напряжений в трёх измерениях
  • Разные виды механического напряжения:<br>
1 — сжатие;<br>
2 — растяжение;<br>
3 — сдвиг;<br>
4 — изгиб;<br>
5 — кручение;<br>
6 — знакопеременное напряжение.
  • Рис. 4. Тело в равновесии.
  • Рисунок 2.1a Внутреннее распределение контактных сил и парных напряжений на дифференциальной площадке <math>dS\,\!</math> внутренней поверхности <math>S\,\!</math> в объёме, в результате взаимодействия между двумя частями объёма, разделенными секущей поверхностью
  • Рисунок 2.1b Внутреннее распределение контактных сил и парных напряжений на дифференциальной площадке <math>dS\,\!</math> внутренней поверхности <math>S\,\!</math> в объёме, в результате взаимодействия между двумя частями объёма, разделенными секущей поверхностью
  • Рисунок 6. Октаэдрические плоскости напряжений.
  • Полный тензор механического напряжения элементарного объёма тела. Буквой σ обозначены нормальные механические напряжения, а касательные буквой τ.
  • Рисунок 2.4 Преобразование тензора напряжений
  •  Стеклянная ваза с эффектом ''[[кракелюр]]''. Трещины возникают в результате кратковременного, но интенсивного напряжения, возникающего при кратковременном погружении полурасплавленной детали в воду.

Механическое напряжение         
В механике сплошной среды механическое напряжение — это физическая величина, которая выражает внутренние силы, которые соседние частицы в непрерывной среде оказывают друг на друга, а деформация — это мера изменения геометрических размеров среды. Например, когда сплошная вертикальная штанга поддерживает груз, каждая частица в штанге давит на частицы, находящиеся непосредственно под ней. Когда жидкость находится в закрытом контейнере под давлением, каждая частица сталкивается со всеми окружающими частицами. Стенки контейнера и поверхность, создаю�
Кривая забывания         
  • Графическое представление кривой забывания
Кривая Эббингауза
Кривая забывания или кривая Эббингауза была получена вследствие экспериментального изучения памяти немецким психологом Германом Эббингаузом в 1885 году.
Жордана кривая         
  • Кривая Жордана на плоскости с положительной мерой Лебега.
ОТОБРАЖЕНИЕ ОДНОМЕРНОГО ПРОСТРАНСТВА В МНОГОМЕРНОЕ
Плоская кривая; Кривые; Линия (кривая); Простая дуга; Простая линия; Кривая Жордана; Жорданова кривая; Трансцендентная кривая; Аналитическая кривая; Жордана кривая; Трансцендентные кривые; Путь (математика); Жорданова дуга; Замкнутая кривая; Простая кривая; Кривая линия

жорданова кривая, геометрическое место точек М (х, у) плоскости, координаты которых удовлетворяют уравнениям: х = φ(t), y = ψ (t) где φ и ψ - непрерывные функции аргумента t на некотором отрезке [a, b]. Иначе, Ж. к. есть непрерывный образ отрезка [а, b]. Это определение является одним из возможных математически строгих определений понятия непрерывной кривой. Однако Ж. к. может иметь весьма мало общего с тем представлением, которое обычно связывается с кривой; например, Ж. к. может проходить через все точки некоторого квадрата.

Если точки М (х, у) Ж. к., соответствующие различным значениям t, различны между собой, то такая Ж. к. называется простой дугой. Иными словами, простая дуга есть Ж. к. без кратных точек. Простая дуга является гомеоморфным (см. Гомеоморфизм) образом отрезка. Если же точки Ж. к., соответствующие t = а и t = b, совпадают, а все остальные точки между собой различны и отличны от М [φ(a), ψ(a)], то Ж. к. называется простым замкнутым контуром. Такая Ж. к. является гомеоморфным образом окружности.

Французский математик М. Э. К. Жордан, по имени которого названа Ж. к., доказал в 1882, что всякая замкнутая Ж. к. без кратных точек делит плоскость на две области, из которых одна является внутренней по отношению к этой кривой, а другая внешней. Это предложение носит название теоремы Жордана.

С. Б. Стечкин.

Wikipédia

Механическое напряжение

В механике сплошной среды механическое напряжение — это физическая величина, которая выражает внутренние силы, которые соседние частицы в непрерывной среде оказывают друг на друга, а деформация — это мера изменения геометрических размеров среды. Например, когда сплошная вертикальная штанга поддерживает груз, каждая частица в штанге давит на частицы, находящиеся непосредственно под ней. Когда жидкость находится в закрытом контейнере под давлением, каждая частица сталкивается со всеми окружающими частицами. Стенки контейнера и поверхность, создающая давление (например, поршень), прижимаются к ним в (по третьему закону Ньютона) соответствии с силой реакции. Эти макроскопические силы на самом деле являются чистым результатом очень большого количества межмолекулярных сил и столкновений между частицами в этих средах. Механическое напряжение или в дальнейшем напряжение часто обозначается строчной греческой буквой сигма σ.

Деформация, то есть взаимное смещение внутренних частей материала, может возникать из-за различных механизмов, таких как напряжение, при приложении внешних сил к массивному материалу (например, гравитация) или к его поверхности (например, контактные силы, внешнее давление или трение). Любая деформация твёрдого материала создает внутреннее упругое напряжение, аналогичное силе реакции пружины, которое стремится вернуть материал в его исходное недеформированное состояние, наблюдавшееся до приложения внешних сил. В жидкостях и газах только деформации, которые изменяют объём, создают постоянное упругое напряжение. Однако, если деформация постепенно изменяется со временем, даже в жидкостях обычно возникает некоторое вязкое напряжение, препятствующее этому изменению. Упругие и вязкие напряжения обычно объединяют под названием механическое напряжение.

Значительное напряжение может существовать, даже если деформация незначительна или отсутствует вовсе (обычное допущение при моделировании потока воды). Напряжение может существовать при отсутствии внешних сил; такое встроенное напряжение встречается, например, в предварительно напряжённом бетоне и закалённом стекле. Напряжение может наблюдаться в материале без приложения общих сил, например, из-за изменений температуры или химического состава или внешних электромагнитных полей (как в пьезоэлектрических и магнитострикционных материалах).

Связь между механическим напряжением, деформацией и скоростью изменения деформации может быть довольно сложной, хотя линейное приближение часто оказывается адекватным на практике, если их величины достаточно малы. Напряжение, превышающее определённые пределы прочности материала, приведёт к необратимой деформации (например, пластическому течению, разрушению, кавитации) или даже к изменению его кристаллической структуры и химического состава.

В некоторых отраслях техники термин «напряжение» иногда используется в более широком смысле как синоним «внутренней силы». Например, при анализе ферм это может относиться к общей силе растяжения или сжатия, действующей на балку, а не к силе, делённой на площадь её поперечного сечения.

O que é Механическое напряжение - definição, significado, conceito