сила земного тяготения - definição. O que é сила земного тяготения. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é сила земного тяготения - definição

РОМАН ТОМАСА ПИНЧОНА
Радуга земного тяготения

Знание - сила         
  • Обложки журнала за 1926, 1940, 1959, 1961, 1962, 1964, 1965, 1967, 1970, 1976, 1978, 1981, 1987 и 1991 годы
  • Логотипы журнала
  • Среднемесячные тиражи журнала «Знание — сила» с 1946 (послевоенное возобновление выпуска) по 2015 год
СОВЕТСКИЙ И РОССИЙСКИЙ НАУЧНО-ПОПУЛЯРНЫЙ ЖУРНАЛ
Знание-сила; Знание — сила (журнал); Знание-сила (журнал); Знание — Сила; Знание - сила; Знание - Сила; Знание-Сила; Знание – сила; Знание - сила (журнал); Знание – сила: Фантастика; Знание — сила: Фантастика
("Зна́ние - си́ла",)

ежемесячный научно-популярный и научно-художественный иллюстрированный журнал для молодёжи, орган Всесоюзного общества "Знание". Издаётся в Москве с 1926 (в 1942-45 не выходил). В журнале освещаются важнейшие современные проблемы науки и техники, рассказывается об интересных фактах и событиях прошлого и др. Тираж (1972) 500 тыс. экз.

ПОДЪЕМНАЯ СИЛА         
  • Силы, действующие на крыло самолёта в полёте
  • deadlink=no}}</ref>
Подъёмная сила (аэродинамика); Подъемная сила; Подъемная сила (аэродинамика); Сила подъёмная; Коэффициент подъёмной силы; Коэффициент подъемной силы
составляющая полной силы давления жидкой или газообразной среды на движущееся в ней тело; направлена перпендикулярно скорости движения тела.
Подъёмная сила         
  • Силы, действующие на крыло самолёта в полёте
  • deadlink=no}}</ref>
Подъёмная сила (аэродинамика); Подъемная сила; Подъемная сила (аэродинамика); Сила подъёмная; Коэффициент подъёмной силы; Коэффициент подъемной силы

составляющая полной силы давления жидкой или газообразной среды на движущееся в ней тело, направленная перпендикулярно к скорости тела (к скорости центра тяжести тела, если оно движется непоступательно). Возникает П. с. вследствие несимметрии обтекания тела средой. Например, при обтекании крыла самолёта (рис. 1) частицы среды, обтекающие нижнюю поверхность, проходят за тот же промежуток времени меньший путь, чем частицы, обтекающие верхнюю, более выпуклую поверхность и, следовательно, имеют меньшую скорость. Но, согласно Бернулли уравнению (См. Бернулли уравнение), там, где скорость частиц меньше, давление среды больше и наоборот. В результате давление среды на нижнюю поверхность крыла будет больше, чем на верхнюю, что и приводит к появлению П. с.

Несимметричное обтекание крыла можно представить как результат наложения на симметричное течение циркуляционного потока вокруг контура крыла, направленного на более выпуклой части поверхности в сторону течения, что приводит к увеличению скорости, а на менее выпуклой - против течения, что приводит к её уменьшению. Тогда П. с. Y будет зависеть от величины циркуляции скорости (См. Циркуляция скорости) Г и, согласно Жуковского теореме (См. Жуковского теорема), для участка крыла длиной L, обтекаемого плоскопараллельным потоком идеальной несжимаемой жидкости, Y = ρυГL, где ρ - плотность среды, υ - скорость набегающего потока.

Поскольку Г имеет размерность [υ․l], то П. с. можно выразить равенством Y = cyρSυ2/2 обычно применяемым, в аэродинамике где S - величина характерной для тела площади (например, площадь крыла в плане), су - безразмерный коэффициент П. с., зависящий от формы тела, его ориентации в среде и чисел Рейнольдса Re и Маха М. Значение су определяют теоретическим расчётом или экспериментально. Так, согласно теории Жуковского, для крыла в плоско-параллельном потоке су = 2m - α0), где α - угол атаки (угол между направлением скорости набегающего потока и хордой крыла), α0 - угол нулевой П. с., m - коэффициент, зависящий только от формы профиля крыла, например, для тонкой изогнутой пластины m = π. В случае крыла конечного размаха / коэффициент m = π/(1 - 2), где λ = l2/S - удлинение крыла.

В реальной жидкости в результате влияния вязкости величина m меньше теоретической, причём эта разница возрастает по мере увеличения относительной толщины профиля; значение угла α0 также меньше теоретического. Кроме того, с увеличением угла α зависимость су от α (рис. 2), перестаёт быть линейной и величина dcy/dα монотонно убывает, становясь равной нулю при угле атаки αкр, которому соответствует максимальная величина коэффициента П. с. - cymax. Дальнейшее увеличение а ведёт к падению су вследствие отрыва пограничного слоя от верхней поверхности крыла. Величина cymax имеет существенное значение, т.к. чем она больше, тем меньше скорость взлёта и посадки самолёта.

При больших, но докритических скоростях, т. е. таких, для которых М < Мкр (Mkp - значение числа М набегающего потока, при котором вблизи поверхности профиля местные значения числа М = 1), становится существенной сжимаемость газа. Для слабо изогнутых и тонких профилей при малых углах атаки сжимаемость можно приближённо учесть, положив

, .

При сверхзвуковых скоростях характер обтекания существенно меняется. Так, при обтекании плоской пластины у передней кромки на верхней поверхности образуются волны разрежения, а на нижней - Ударная волна (рис. 3). В результате давление рн на нижней поверхности пластины становится больше, чем на верхней (рв); возникает суммарная сила, нормальная к поверхности пластины, составляющая которой, перпендикулярная к скорости набегающего потока, и есть П. с. Для малых М > 1 и малых α П. с. пластины может быть вычислена по формуле . Эта формула справедлива и для тонких профилей произвольной формы с острой передней кромкой.

Лит.: Жуковский Н.Е., О присоединенных вихрях, Избр. соч., т. 2, М. - Л., 1948; Лойцянский Л. Г., Механика жидкости и газа, 2 изд., М., 1957; Голубев В. В., Лекции по теории крыла, М. - Л., 1949; Абрамович Г. Н., Прикладная газовая динамика, 2 изд., М., 1953; Ферри А., Аэродинамика сверхзвуковых течений, пер. с англ., М., 1953.

М. Я. Юделович.

Рис. 1. Обтекание профиля крыла самолёта. Скорость νн < νв, давление рнв, Y - подъёмная сила крыла.

Рис. 2. Зависимость су от α.

Рис. 3. Схема сверхзвукового обтекания пластинки: νв > ν1, рв < p1; ν2 < νв, р2 > рв; νн < ν1, рн > ν1; ν3> νн, p3 < рн.

Wikipédia

Радуга тяготения

«Радуга тяготения» (англ. Gravity's Rainbow) — постмодернистский роман Томаса Пинчона, впервые опубликованный 28 февраля 1973 года.

Сюжет разворачивается в Европе в конце Второй Мировой войны, в центрах по разработке, производству и отправке ракет Фау-2 для немецких войск, где несколько персонажей отправляются на поиски раскрытия секрета таинственного устройства под названием «Schwarzgerät» («черный блок»), который будет установлен на ракете с серийным номером «00000».

«Радуга тяготения» представляет жанр трансгрессивной литературы, подвергая сомнениям и инвертируя социальные стандарты девиантности и отвращения, преступая границы западной культуры и мышления. Роман часто отклоняется от традиционных элементов сюжета и развития персонажей, придавая большее значение специализированным знаниям самого широкого спектра дисциплин.

Роман получил высокие похвалы за инновации и сложность, но также и достаточное количество критики. В 1974 году «Радуга тяготения» выдвинута на Пулитцеровскую премию. Трое членов жюри проголосовали «за», остальные одиннадцать «против» — в результате номинация в том году осталась без призёра. В 1973 году роман номинирован на премию Небьюла в номинации «лучший роман» и разделил в 1974 году приз U.S. National Book Award в номинации «художественная литература» со сборником «Корона из перьев и другие рассказы» Исаака Башевиса Зингера. С момента публикации «Радуга тяготения» породила огромное количество литературной критики и комментариев, в том числе два руководства для читателей и несколько интернет-согласований. Роман часто называют главным произведением Томаса Пинчона.

«Радуга тяготения» включена в список «100 лучших романов всех времен» (лучшие англоязычные романы с 1923 по 2005 годы по версии Time) и, по мнению некоторых критиков, является одним из величайших американских романов.

Exemplos do corpo de texto para сила земного тяготения
1. В романе "Агасфер", например, воплощением мирового зла является орден иезуитов, могущественный, как сила земного тяготения, влияющий на процессы, происходящие по всему миру -- от парижских салонов до дебрей Индостана.
O que é Зн<font color="red">а</font>ние - с<font color="red">и</font>ла - definição, significado, co