численное преимущество - definição. O que é численное преимущество. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é численное преимущество - definição

Квантовое преимущество

Численное решение уравнений         
  • Решение уравнения cos(x)=x по методу простой итерации, очередная итерация: x<sub>n+1</sub>=cos x<sub>n</sub>, начальное приближение: x<sub>1</sub> = −1
  • Решение уравнения f(x)=0 по методу Ньютона, начальное приближение: x<sub>1</sub>=a.
АЛГОРИТМЫ НАХОЖДЕНИЯ КОРНЕЙ
Метод последовательных приближений; Численное решение системы нелинейных уравнений; Метод итераций
Численное решение уравнений и их систем состоит в приближённом определении корней уравнения или системы уравнений и применяется в случаях, когда точный метод решения неизвестен или трудоёмок.
ЧИСЛЕННОЕ РЕШЕНИЕ УРАВНЕНИЙ         
  • Решение уравнения cos(x)=x по методу простой итерации, очередная итерация: x<sub>n+1</sub>=cos x<sub>n</sub>, начальное приближение: x<sub>1</sub> = −1
  • Решение уравнения f(x)=0 по методу Ньютона, начальное приближение: x<sub>1</sub>=a.
АЛГОРИТМЫ НАХОЖДЕНИЯ КОРНЕЙ
Метод последовательных приближений; Численное решение системы нелинейных уравнений; Метод итераций
нахождение приближенных численных решений алгебраических и трансцендентных уравнений, в отличие от решений, выражаемых формулами. Численное решение уравнений сводится к выполнению арифметических операций над коэффициентами уравнений и значениями входящих в него функций и позволяет найти решение уравнений с любой наперед заданной точностью. К численному решению уравнений сводятся многие задачи математики и ее приложений.
Численное решение уравнений         
  • Решение уравнения cos(x)=x по методу простой итерации, очередная итерация: x<sub>n+1</sub>=cos x<sub>n</sub>, начальное приближение: x<sub>1</sub> = −1
  • Решение уравнения f(x)=0 по методу Ньютона, начальное приближение: x<sub>1</sub>=a.
АЛГОРИТМЫ НАХОЖДЕНИЯ КОРНЕЙ
Метод последовательных приближений; Численное решение системы нелинейных уравнений; Метод итераций

нахождение приближённых решений алгебраических и трансцендентных уравнений. Ч. р. у. сводится к выполнению арифметических операций над коэффициентами уравнений и значениями входящих в него функций и позволяет найти решения уравнений с любой наперёд заданной точностью. К Ч. р. у. сводятся многие задачи математики и её приложений. Хотя общие методы Ч. р. у. появились лишь в 17 в. (И. Ньютон), но ещё Леонардо Пизанский (начало 13 в.) вычислил корень уравнения х3 + 2x2 + 10x = 20 с ошибкой, меньшей чем В конце 16 в. И. Бюрги (Швейцария) вычислил корень уравнения 9 - 30x2 + 27x4 - 9x6 + x8 = 0, определяющего длину стороны правильного девятиугольника. Приблизительно в то же время Ф. Виет дал метод вычисления корней алгебраических уравнений, сходный с Ньютона методом.

Численное решение алгебраических уравнений разбивается на следующие этапы: 1) выделение кратных корней, сводящее задачу к решению уравнения с простыми корнями; 2) определение границ, между которыми могут лежать корни уравнения; 3) разделение корней, т. е. указание промежутков, каждый из которых содержит не более одного простого корня (см. Штурма правило); 4) грубое определение приближённого значения корня, выполняемое графически или каким-либо иным способом (например, при помощи изучения перемен знака левой части уравнения); 5) вычисление корня с заданной точностью. Наиболее распространёнными методами для этого являются методы ложного положения, метод Ньютона, Лобачевского метод, последовательных приближений метод (См. Последовательных приближении метод), разложение в ряды и т.д.

При численном решении трансцендентных уравнений ограничиваются этапами 4 и 5. О численном решении дифференциальных уравнений см. в ст. Приближённое решение дифференциальных уравнений.

Лит.: Энциклопедия элементарной математики, кн. 2 - Алгебра, М.-Л., 1951; Курош А. Г., Курс высшей алгебры, 11 изд., М., 1975.

Wikipédia

Квантовое превосходство

Ква́нтовое превосхо́дство — способность квантовых вычислительных устройств решать проблемы, которые классические компьютеры практически не могут решить. Квантовое преимущество — возможность решать проблемы быстрее. С точки зрения теории сложности вычислений под этим обычно подразумевается обеспечение суперполиномиального ускорения по сравнению с наиболее известным или возможным классическим алгоритмом. Термин был популяризирован Джоном Прескиллом, но концепция квантового вычислительного преимущества, особенно в моделировании квантовых систем, восходит к предложению квантовых вычислений, которое дали Юрий Манин (1980) и Ричард Фейнман (1981).

Алгоритм Шора для факторизации целых чисел, который выполняется за полиномиальное время на квантовом компьютере, обеспечивает такое суперполиномиальное ускорение по сравнению с наиболее известным классическим алгоритмом. Хотя это ещё предстоит доказать, факторизация считается сложной задачей при использовании классических ресурсов. Трудность доказательства того, что нельзя сделать с помощью классических вычислений, является общей проблемой для безусловной демонстрации квантового превосходства. Это также влияет на предложение по семплингу бозонов Ааронсона и Архипова, специализированные проблемы компании D-Wave о frustrated cluster loop и семплинг выходного результата для случайных квантовых схем.

Подобно факторизации целых чисел, задача о выборке выходных распределений случайных квантовых схем считается сложной для классических компьютеров на основе разумных предположений о сложности.

Exemplos do corpo de texto para численное преимущество
1. Численное преимущество армейцы реализовали незамедлительно.
2. Константин Кольцов реализовал численное преимущество.
3. Численное преимущество хозяева реализовали быстро.
4. - Что помешало реализовать численное преимущество?
5. Подвело ярославцев, как ни парадоксально, численное преимущество.
O que é Численное решение уравнений - definição, significado, conceito