Łukasiewicz–Moisil algebra - определение. Что такое Łukasiewicz–Moisil algebra
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Łukasiewicz–Moisil algebra - определение


Łukasiewicz–Moisil algebra         
Łukasiewicz–Moisil algebras (LMn algebras) were introduced in the 1940s by Grigore Moisil (initially under the name of Łukasiewicz algebrasAndrei Popescu, Łukasiewicz-Moisil Relation Algebras, Studia Logica, Vol. 81, No.
Łukasiewicz logic         
MANY-VALUED LOGIC
Lukasiewicz fuzzy logic; Lukasiewicz logic; Łukasiewicz fuzzy logic; Łukasiewicz-Tarski logic; Łukasiewicz implication; Łukasiewicz–Tarski logic; Draft:Łukasiewicz logic
In mathematics and philosophy, Łukasiewicz logic ( , ) is a non-classical, many-valued logic. It was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued modal logic;Łukasiewicz J.
*-algebra         
ALGEBRA EQUIPPED WITH AN INVOLUTION OVER A *-RING
Star algebra; *-homomorphism; * algebra; Involution algebra; Involutive algebra; *-ring; Star-algebra; * ring; Involutory ring; Involutary ring; Star ring; *algebra; Involutive ring
In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra) is a mathematical structure consisting of two involutive rings and , where is commutative and has the structure of an associative algebra over . Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints.