A Choice of Enemies - определение. Что такое A Choice of Enemies
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое A Choice of Enemies - определение


A Choice of Enemies         
BOOK BY MORDECAI RICHLER
A Choice of Enemies is the third novel by Canadian author Mordecai Richler. It was first published in 1957 by André Deutsch.
Act of Free Choice         
  • A map showing [[Indonesia]] including [[Western New Guinea]].
1969 REFERENDUM IN WESTERN NEW GUINEA
Pepera; Act of free choice; Act of no choice; Act of No Choice; Penentuan Pendapat Rakyat; The Act of Free Choice
The Act of Free Choice () was a poll held between 14 July and 2 August 1969 in which 1,025 people selected by the Indonesian military in Western New Guinea voted unanimously in favor of Indonesian control.
Axiom of countable choice         
  • uncountably infinite]]), number of elements. The axiom of countable choice allows us to arbitrarily select a single element from each set, forming a corresponding sequence of elements (''x''<sub>''i''</sub>)&nbsp;= ''x''<sub>1</sub>, ''x''<sub>2</sub>, ''x''<sub>3</sub>,&nbsp;...
AXIOM OF SET THEORY, ASSERTING THAT THE PRODUCT OF A COUNTABLE FAMILY OF NONEMPTY SETS IS NONEMPTY
Countable choice; Countable axiom of choice; ACω
The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain N (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n ∈ N, there exists a function f with domain N such that f(n) ∈ A(n) for every n ∈ N.