ADD$522643$ - определение. Что такое ADD$522643$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ADD$522643$ - определение

Overlap-add Method; Overlap-add; Overlap add; Overlap-add method

Add-on (Mozilla)         
MOZILLA TERM FOR SOFTWARE MODULES THAT CAN BE ADDED TO THE FIREFOX WEB BROWSER AND RELATED APPLICATIONS
Mozilla Add-ons; Mozilla extensions; Mozilla Update; Addons.mozilla.org; Update.mozilla.org; Firefox extention; Mozilla extension; A.m.o.; Mozilla Addons; Extension (Mozilla); Add on (Mozilla); Firefox add-on; Firefox addon; Firefox Addons; Firefox Add-ons; Firefox add-ons; Firefox addons; Firefox background theme; Addon (Mozilla); Add-ons for Firefox; Add-On (Mozilla); Personas for Firefox; Personas Plus; Personas (Firefox); Firefox background themes; Mozilla addon; WebExtension; WebExtensions; Web Extensions; Firefox Background Themes; Add-on (Firefox); Add-on (Mozilla Firefox)
Add-on is the Mozilla term for software modules that can be added to the Firefox web browser and related applications. Mozilla hosts them on its official add-on website.
List of H2O: Just Add Water episodes         
WIKIMEDIA LIST ARTICLE
List of H2O: Just Add Water Episodes; H2o episode guide; H2O: Just Add Water (season 1); H2O: Just Add Water (season 2); H2O: Just Add Water (season 3); H2O: Just Add Water (Season 1); H2O (Season 1); Metamorphosis (H2O: Just Add Water); Fire and Ice (H2O: Just Add Water); Double Trouble (H2O: Just Add Water)
The following is an episode list for the Australian television show H2O: Just Add Water, which first aired on Network Ten in Australia and has since been broadcast in more than 120 countries worldwide. Series one premiered in Australia on 7 July 2006 and series two began there on 28 September 2007.
Add Fuel         
ILLUSTRATOR, STREET ARTIST
Add fuel; Diogo Machado; Add fuel to the fire
Add Fuel is Portuguese visual artist and illustrator Diogo Machado (born 1980). With a degree in Graphic Design from Lisbon's IADE – Institute of Visual Arts, Design and Marketing, he spent a few years working in design studios in Portugal, followed by an eight-month stint in Munich, Germany.

Википедия

Overlap–add method

In signal processing, the overlap–add method is an efficient way to evaluate the discrete convolution of a very long signal x [ n ] {\displaystyle x[n]} with a finite impulse response (FIR) filter h [ n ] {\displaystyle h[n]} :

where h[m] = 0 for m outside the region [1, M]. This article uses common abstract notations, such as y ( t ) = x ( t ) h ( t ) , {\textstyle y(t)=x(t)*h(t),} or y ( t ) = H { x ( t ) } , {\textstyle y(t)={\mathcal {H}}\{x(t)\},} in which it is understood that the functions should be thought of in their totality, rather than at specific instants t {\textstyle t} (see Convolution#Notation).

The concept is to divide the problem into multiple convolutions of h[n] with short segments of x [ n ] {\displaystyle x[n]} :

x k [ n ]     { x [ n + k L ] , n = 1 , 2 , , L 0 , otherwise , {\displaystyle x_{k}[n]\ \triangleq \ {\begin{cases}x[n+kL],&n=1,2,\ldots ,L\\0,&{\text{otherwise}},\end{cases}}}

where L is an arbitrary segment length. Then:

x [ n ] = k x k [ n k L ] , {\displaystyle x[n]=\sum _{k}x_{k}[n-kL],\,}

and y[n] can be written as a sum of short convolutions:

y [ n ] = ( k x k [ n k L ] ) h [ n ] = k ( x k [ n k L ] h [ n ] ) = k y k [ n k L ] , {\displaystyle {\begin{aligned}y[n]=\left(\sum _{k}x_{k}[n-kL]\right)*h[n]&=\sum _{k}\left(x_{k}[n-kL]*h[n]\right)\\&=\sum _{k}y_{k}[n-kL],\end{aligned}}}

where the linear convolution y k [ n ]     x k [ n ] h [ n ] {\displaystyle y_{k}[n]\ \triangleq \ x_{k}[n]*h[n]\,} is zero outside the region [1, L + M − 1]. And for any parameter N L + M 1 , {\displaystyle N\geq L+M-1,\,} it is equivalent to the N-point circular convolution of x k [ n ] {\displaystyle x_{k}[n]\,} with h [ n ] {\displaystyle h[n]\,} in the region [1, N].  The advantage is that the circular convolution can be computed more efficiently than linear convolution, according to the circular convolution theorem:

where:

  • DFTN and IDFTN refer to the Discrete Fourier transform and its inverse, evaluated over N discrete points, and
  • L is customarily chosen such that N = L+M-1 is an integer power-of-2, and the transforms are implemented with the FFT algorithm, for efficiency.