QFL diagram - определение. Что такое QFL diagram
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое QFL diagram - определение


QFL diagram         
  • QFL triangle showing schematic plots of common sand compositions
TYPE OF TERNARY DIAGRAM (QUARTZ, FELDSPATH, LITHICS) USED IN GEOLOGY FOR SOURCE-TO-SINK STUDIES
Qfl; Qfl diagram; QFL Diagrams; QFL triangle; QFL diagrams; QFL
A QFL diagram or QFL triangle is a type of ternary diagram that shows compositional data from sandstones and modern sands, point counted using the Gazzi-Dickinson method. The abbreviations used are as follows:
Venn diagram         
  • 180px
  • 45px
  • 45px
  • 30px
  • 45px
  • 30px
  • 30px
  • 45px
  • 45px
  • 30px
  • 30px
  • 45px
  • 30px
  • 45px
  • 45px
  • 180px
  • 180px
  • 180px
  • 180px
  • [[Stained-glass]] window with Venn diagram in [[Gonville and Caius College, Cambridge]]
  • Venn diagram as a truth table
  • Sets of creatures with two legs, and creatures that fly
DIAGRAM THAT SHOWS ALL POSSIBLE LOGICAL RELATIONS BETWEEN A COLLECTION OF SETS
Johnston diagram; Venn disagram; Venn diagrams; Ven diagram; Venn Diagram; Logic diagram; Venn diagramme; Vin diagram; Set diagram; Venn Diagrams; Area proportional Venn diagram; Area-proportional Venn diagram; Scaled Venn diagram; Venn-Euler diagram; Euler-Venn diagram; Euler–Venn diagram; Venn–Euler diagram; Generalised Venn Diagram; Generalised Venn diagram; Generalized Venn Diagram; Generalized Venn diagram; Edwards' Venn diagram; Edwards-Venn diagram; Edwards–Venn diagram; Symmetric Venn diagram; Cogwheel diagram; Primary diagram; Venn's primary diagram; Primary Venn diagram; Venn's Primary Diagram; Symmetrical Venn diagram; Simple symmetric Venn diagram; Simple symmetrical Venn diagram; Cylindrical Venn diagram; Elegant Venn diagram; Newroz diagram; Adelaide diagram; Hamilton diagram; Massey diagram; Victoria diagram; Palmerston North diagram; Manawatu diagram; Manawatū diagram; Two-set Venn diagram; Two-set diagram; 2-set Venn diagram; 2-set diagram; Three-set Venn diagram; Three-set diagram; 3-set Venn diagram; 3-set diagram; Four-set Venn diagram; Four-set diagram; 4-set Venn diagram; 4-set diagram; Five-set Venn diagram; Five-set diagram; 5-set Venn diagram; 5-set diagram; Six-set Venn diagram; Six-set diagram; 6-set Venn diagram; 6-set diagram; Seven-set Venn diagram; Seven-set diagram; 7-set Venn diagram; 7-set diagram; Eight-set Venn diagram; Eight-set diagram; 8-set Venn diagram; 8-set diagram; Nine-set Venn diagram; Nine-set diagram; 9-set Venn diagram; 9-set diagram; Ten-set Venn diagram; Ten-set diagram; 10-set Venn diagram; 10-set diagram; Eleven-set Venn diagram; Eleven-set diagram; 11-set Venn diagram; 11-set diagram; 2-Venn diagram; 3-Venn diagram; 4-Venn diagram; 6-Venn diagram; 5-Venn diagram; 7-Venn diagram; 8-Venn diagram; 9-Venn diagram; 10-Venn diagram; 11-Venn diagram; N-Venn diagram; Metrical Venn diagram; Exclusion diagram
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science.
Venn diagram         
  • 180px
  • 45px
  • 45px
  • 30px
  • 45px
  • 30px
  • 30px
  • 45px
  • 45px
  • 30px
  • 30px
  • 45px
  • 30px
  • 45px
  • 45px
  • 180px
  • 180px
  • 180px
  • 180px
  • [[Stained-glass]] window with Venn diagram in [[Gonville and Caius College, Cambridge]]
  • Venn diagram as a truth table
  • Sets of creatures with two legs, and creatures that fly
DIAGRAM THAT SHOWS ALL POSSIBLE LOGICAL RELATIONS BETWEEN A COLLECTION OF SETS
Johnston diagram; Venn disagram; Venn diagrams; Ven diagram; Venn Diagram; Logic diagram; Venn diagramme; Vin diagram; Set diagram; Venn Diagrams; Area proportional Venn diagram; Area-proportional Venn diagram; Scaled Venn diagram; Venn-Euler diagram; Euler-Venn diagram; Euler–Venn diagram; Venn–Euler diagram; Generalised Venn Diagram; Generalised Venn diagram; Generalized Venn Diagram; Generalized Venn diagram; Edwards' Venn diagram; Edwards-Venn diagram; Edwards–Venn diagram; Symmetric Venn diagram; Cogwheel diagram; Primary diagram; Venn's primary diagram; Primary Venn diagram; Venn's Primary Diagram; Symmetrical Venn diagram; Simple symmetric Venn diagram; Simple symmetrical Venn diagram; Cylindrical Venn diagram; Elegant Venn diagram; Newroz diagram; Adelaide diagram; Hamilton diagram; Massey diagram; Victoria diagram; Palmerston North diagram; Manawatu diagram; Manawatū diagram; Two-set Venn diagram; Two-set diagram; 2-set Venn diagram; 2-set diagram; Three-set Venn diagram; Three-set diagram; 3-set Venn diagram; 3-set diagram; Four-set Venn diagram; Four-set diagram; 4-set Venn diagram; 4-set diagram; Five-set Venn diagram; Five-set diagram; 5-set Venn diagram; 5-set diagram; Six-set Venn diagram; Six-set diagram; 6-set Venn diagram; 6-set diagram; Seven-set Venn diagram; Seven-set diagram; 7-set Venn diagram; 7-set diagram; Eight-set Venn diagram; Eight-set diagram; 8-set Venn diagram; 8-set diagram; Nine-set Venn diagram; Nine-set diagram; 9-set Venn diagram; 9-set diagram; Ten-set Venn diagram; Ten-set diagram; 10-set Venn diagram; 10-set diagram; Eleven-set Venn diagram; Eleven-set diagram; 11-set Venn diagram; 11-set diagram; 2-Venn diagram; 3-Venn diagram; 4-Venn diagram; 6-Venn diagram; 5-Venn diagram; 7-Venn diagram; 8-Venn diagram; 9-Venn diagram; 10-Venn diagram; 11-Venn diagram; N-Venn diagram; Metrical Venn diagram; Exclusion diagram
¦ noun a diagram representing mathematical or logical sets as circles, common elements of the sets being represented by intersections of the circles.
Origin
early 20th cent.: named after the English logician John Venn.