algorithm - определение. Что такое algorithm
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое algorithm - определение

SEQUENCE OF INSTRUCTIONS TO PERFORM A TASK
Algorithmically; Computer algorithm; Properties of algorithms; Algorithim; Algoritmi de Numero Indorum; Algoritmi de numero indorum; Algoritmi De Numero Indorum; Алгоритм; Algorithem; Software logic; Computer algorithms; Encoding Algorithm; Naive algorithm; Naïve algorithm; Algorithm design; Algorithm segment; Algorithmic problem; Algorythm; Rule set; Continuous algorithm; Algorithms; Software-based; Algorithmic method; Algorhthym; Algorthym; Algorhythms; Formalization of algorithms; Mathematical algorithm; Draft:GE8151 Problem Solving and Python Programming; Computational algorithms; Optimization algorithms; Algorithm classification; History of algorithms; Patented algorithms; Algorithmus
  • Alan Turing's statue at [[Bletchley Park]]
  • [[Ada Lovelace]]'s diagram from "note G", the first published computer algorithm
  • The example-diagram of Euclid's algorithm from T.L. Heath (1908), with more detail added. Euclid does not go beyond a third measuring and gives no numerical examples. Nicomachus gives the example of 49 and 21: "I subtract the less from the greater; 28 is left; then again I subtract from this the same 21 (for this is possible); 7 is left; I subtract this from 21, 14 is left; from which I again subtract 7 (for this is possible); 7 is left, but 7 cannot be subtracted from 7." Heath comments that "The last phrase is curious, but the meaning of it is obvious enough, as also the meaning of the phrase about ending 'at one and the same number'."(Heath 1908:300).
  • "Inelegant" is a translation of Knuth's version of the algorithm with a subtraction-based remainder-loop replacing his use of division (or a "modulus" instruction). Derived from Knuth 1973:2–4. Depending on the two numbers "Inelegant" may compute the g.c.d. in fewer steps than "Elegant".
  • 1=IF test THEN GOTO step xxx}}, shown as diamond), the unconditional GOTO (rectangle), various assignment operators (rectangle), and HALT (rectangle). Nesting of these structures inside assignment-blocks results in complex diagrams (cf. Tausworthe 1977:100, 114).
  • A graphical expression of Euclid's algorithm to find the greatest common divisor for 1599 and 650
<syntaxhighlight lang="text" highlight="1,5">
 1599 = 650×2 + 299
 650 = 299×2 + 52
 299 = 52×5 + 39
 52 = 39×1 + 13
 39 = 13×3 + 0</syntaxhighlight>
Найдено результатов: 1167
algorithm         
<algorithm, programming> A detailed sequence of actions to perform to accomplish some task. Named after the Iranian, Islamic mathematician, astronomer, astrologer and geographer, Muhammad ibn Musa al-Khwarizmi. Technically, an algorithm must reach a result after a finite number of steps, thus ruling out brute force search methods for certain problems, though some might claim that brute force search was also a valid (generic) algorithm. The term is also used loosely for any sequence of actions (which may or may not terminate). {Paul E. Black's Dictionary of Algorithms, Data Structures, and Problems (http://nist.gov/dads/)}. (2002-02-05)
algorithm         
['alg?r??(?)m]
¦ noun a process or set of rules to be followed in calculations or other problem-solving operations, especially by a computer.
Derivatives
algorithmic adjective
algorithmically adverb
Origin
C17 (denoting the Arabic or decimal notation of numbers): var. of ME algorism, via OFr. from med. L. algorismus, Arab. al-?warizmi 'the man of ?warizm' (see algebra).
algorithm         
(algorithms)
An algorithm is a series of mathematical steps, especially in a computer programme, which will give you the answer to a particular kind of problem or question.
N-COUNT
Algorithm         
·noun The art of calculating by nine figures and zero.
II. Algorithm ·noun The art of calculating with any species of notation; as, the algorithms of fractions, proportions, surds, ·etc.
Algorithm         

In mathematics and computer science, an algorithm ( (listen)) is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus".

In contrast, a heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result.

As an effective method, an algorithm can be expressed within a finite amount of space and time, and in a well-defined formal language for calculating a function. Starting from an initial state and initial input (perhaps empty), the instructions describe a computation that, when executed, proceeds through a finite number of well-defined successive states, eventually producing "output" and terminating at a final ending state. The transition from one state to the next is not necessarily deterministic; some algorithms, known as randomized algorithms, incorporate random input.

algorithim         
<spelling> It's spelled "algorithm". (1997-02-25)
Prim's algorithm         
  • The adjacency matrix distributed between multiple processors for parallel Prim's algorithm. In each iteration of the algorithm, every processor updates its part of ''C'' by inspecting the row of the newly inserted vertex in its set of columns in the adjacency matrix. The results are then collected and the next vertex to include in the MST is selected globally.
  • generation]] of this maze, which applies Prim's algorithm to a randomly weighted [[grid graph]].
  • Prim's algorithm starting at vertex A. In the third step, edges BD and AB both have weight 2, so BD is chosen arbitrarily. After that step, AB is no longer a candidate for addition to the tree because it links two nodes that are already in the tree.
  • Demonstration of proof. In this case, the graph ''Y<sub>1</sub>'' = ''Y'' − ''f'' + ''e'' is already equal to ''Y''. In general, the process may need to be repeated.
ALGORITHM
Jarnik algorithm; Prim-Jarnik algorithm; Prim-Jarnik's algorithm; Jarnik's algorithm; Prim-Jarník; DJP algorithm; Jarník algorithm; Jarník's algorithm; Jarníks algorithm; Jarniks algorithm; Prim-Jarník algorithm; Prim-Jarnik; Prim algorithm; Prim’s algorithm; Jarník-Prim; Prims algorithm
In computer science, Prim's algorithm (also known as Jarník's algorithm) is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized.
Dinic's algorithm         
  • 300px
  • 300px
  • 300px
  • 300px
  • 300px
  • 300px
  • 300px
  • 300px
  • 300px
ALGORITHM FOR COMPUTING THE MAXIMAL FLOW OF A NETWORK
Dinic's Algorithm; Dinitz blocking flow algorithm; Blocking flow; Dinic algorithm
Dinic's algorithm or Dinitz's algorithm is a strongly polynomial algorithm for computing the maximum flow in a flow network, conceived in 1970 by Israeli (formerly Soviet) computer scientist Yefim (Chaim) A. Dinitz.
Euclidean Algorithm         
  • A 24-by-60 rectangle is covered with ten 12-by-12 square tiles, where 12 is the GCD of 24 and 60. More generally, an ''a''-by-''b'' rectangle can be covered with square tiles of side-length ''c'' only if ''c'' is a common divisor of ''a'' and ''b''.
  • Plot of a linear [[Diophantine equation]], 9''x''&nbsp;+&nbsp;12''y''&nbsp;=&nbsp;483. The solutions are shown as blue circles.
  • cube root of 1]].
  • Subtraction-based animation of the Euclidean algorithm. The initial rectangle has dimensions ''a''&nbsp;=&nbsp;1071 and ''b''&nbsp;=&nbsp;462. Squares of size 462&times;462 are placed within it leaving a 462&times;147 rectangle. This rectangle is tiled with 147&times;147 squares until a 21&times;147 rectangle is left, which in turn is tiled with 21&times;21 squares, leaving no uncovered area. The smallest square size, 21, is the GCD of 1071 and 462.
  • compass]] in a painting of about 1474.
  • ''u''<sup>2</sup> + ''v''<sup>2</sup>}} less than 500
ALGORITHM FOR COMPUTING GREATEST COMMON DIVISORS
Euclids algorithm; Euclidean Algorithm; Euclid's algorithm; Euclid's algorithem; Euclid algorithm; The Euclidean Algorithm; Game of Euclid; Euclid’s Algorithm; Euclid's division algorithm; Generalizations of the Euclidean algorithm; Applications of the Euclidean algorithm
Euclid's Algorithm         
  • A 24-by-60 rectangle is covered with ten 12-by-12 square tiles, where 12 is the GCD of 24 and 60. More generally, an ''a''-by-''b'' rectangle can be covered with square tiles of side-length ''c'' only if ''c'' is a common divisor of ''a'' and ''b''.
  • Plot of a linear [[Diophantine equation]], 9''x''&nbsp;+&nbsp;12''y''&nbsp;=&nbsp;483. The solutions are shown as blue circles.
  • cube root of 1]].
  • Subtraction-based animation of the Euclidean algorithm. The initial rectangle has dimensions ''a''&nbsp;=&nbsp;1071 and ''b''&nbsp;=&nbsp;462. Squares of size 462&times;462 are placed within it leaving a 462&times;147 rectangle. This rectangle is tiled with 147&times;147 squares until a 21&times;147 rectangle is left, which in turn is tiled with 21&times;21 squares, leaving no uncovered area. The smallest square size, 21, is the GCD of 1071 and 462.
  • compass]] in a painting of about 1474.
  • ''u''<sup>2</sup> + ''v''<sup>2</sup>}} less than 500
ALGORITHM FOR COMPUTING GREATEST COMMON DIVISORS
Euclids algorithm; Euclidean Algorithm; Euclid's algorithm; Euclid's algorithem; Euclid algorithm; The Euclidean Algorithm; Game of Euclid; Euclid’s Algorithm; Euclid's division algorithm; Generalizations of the Euclidean algorithm; Applications of the Euclidean algorithm
<algorithm> (Or "Euclidean Algorithm") An algorithm for finding the greatest common divisor (GCD) of two numbers. It relies on the identity gcd(a, b) = gcd(a-b, b) To find the GCD of two numbers by this algorithm, repeatedly replace the larger by subtracting the smaller from it until the two numbers are equal. E.g. 132, 168 -> 132, 36 -> 96, 36 -> 60, 36 -> 24, 36 -> 24, 12 -> 12, 12 so the GCD of 132 and 168 is 12. This algorithm requires only subtraction and comparison operations but can take a number of steps proportional to the difference between the initial numbers (e.g. gcd(1, 1001) will take 1000 steps). (1997-06-30)

Википедия

Algorithm

In mathematics and computer science, an algorithm ( (listen)) is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning), achieving automation eventually. Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus".

In contrast, a heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result.

As an effective method, an algorithm can be expressed within a finite amount of space and time, and in a well-defined formal language for calculating a function. Starting from an initial state and initial input (perhaps empty), the instructions describe a computation that, when executed, proceeds through a finite number of well-defined successive states, eventually producing "output" and terminating at a final ending state. The transition from one state to the next is not necessarily deterministic; some algorithms, known as randomized algorithms, incorporate random input.