axially-symmetrical - определение. Что такое axially-symmetrical
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое axially-symmetrical - определение

TYPE OF CONTINUOUS SYMMETRY FOR A PLANAR OBJECT THAT CAN BE ROTATED BY ANY ARBITRARY ANGLE AND MAP ONTO ITSELF
Spherical symmetry; Axi-symmetric; Spherically symmetric; Axially-symmetric; Axially symmetric; Axially symmetrical; Axially-symmetrical; Continuous circular symmetry; Circle symmetry; Cylindrical symmetry
  • 120px
  • 120px
  • 120px
  • An unmarked [[sphere]] has ''reflectional spherical symmetry''.
  • A double-cone is a [[surface of revolution]], generated by a line.
  • 120px
  • 160px

Circular symmetry         
In geometry, circular symmetry is a type of continuous symmetry for a planar object that can be rotated by any arbitrary angle and map onto itself.
Symmetrical double-sided two-way ranging         
  • Symmetrical Double-Sided Two-Way Ranging
Symmetrical Double Sided - Two Way Ranging; SDS-TWR; Symmetrical Double Sided – Two Way Ranging
In radio technology, symmetrical double-sided two-way ranging (SDS-TWR) is a ranging method that uses two delays that naturally occur in signal transmission to determine the range between two stations:IEEE Standard 802.15.
Symmetrical inflation target         
METHOD TO CONTROL INFLATION
Symmetrical inflation
A symmetrical inflation target is a requirement placed on a central bank to respond when inflation is too low as well as when inflation is too high.

Википедия

Circular symmetry

In geometry, circular symmetry is a type of continuous symmetry for a planar object that can be rotated by any arbitrary angle and map onto itself.

Rotational circular symmetry is isomorphic with the circle group in the complex plane, or the special orthogonal group SO(2), and unitary group U(1). Reflective circular symmetry is isomorphic with the orthogonal group O(2).