category$11902$ - определение. Что такое category$11902$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое category$11902$ - определение

Dg category; Dg-category; DG category; DG-category

Monoidal category         
  • This is one of the diagrams used in the definition of a monoidal cateogory. It takes care of the case for when there is an instance of an identity between two objects.
  • This is one of the main diagrams used to define a monoidal category; it is perhaps the most important one.
CATEGORY ADMITTING TENSOR PRODUCTS
Tensor category; Lax monoidal category; Monoidal categories; Identity object; Unit object; Free strict monoidal category; Internal product; Unitor; Strict monoidal category; Category of endofunctors; Monoidal category of endofunctors
In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor
Cyclic category         
In mathematics, the cyclic category or cycle category or category of cycles is a category of finite cyclically ordered sets and degree-1 maps between them. It was introduced by .
Pseudo-abelian category         
PREADDITIVE CATEGORY SUCH THAT EVERY IDEMPOTENT HAS A KERNEL
Pseudoabelian category; Karoubian category
In mathematics, specifically in category theory, a pseudo-abelian category is a category that is preadditive and is such that every idempotent has a kernel

Википедия

Differential graded category

In mathematics, especially homological algebra, a differential graded category, often shortened to dg-category or DG category, is a category whose morphism sets are endowed with the additional structure of a differential graded Z {\displaystyle \mathbb {Z} } -module.

In detail, this means that Hom ( A , B ) {\displaystyle \operatorname {Hom} (A,B)} , the morphisms from any object A to another object B of the category is a direct sum

n Z Hom n ( A , B ) {\displaystyle \bigoplus _{n\in \mathbb {Z} }\operatorname {Hom} _{n}(A,B)}

and there is a differential d on this graded group, i.e., for each n there is a linear map

d : Hom n ( A , B ) Hom n + 1 ( A , B ) {\displaystyle d\colon \operatorname {Hom} _{n}(A,B)\rightarrow \operatorname {Hom} _{n+1}(A,B)} ,

which has to satisfy d d = 0 {\displaystyle d\circ d=0} . This is equivalent to saying that Hom ( A , B ) {\displaystyle \operatorname {Hom} (A,B)} is a cochain complex. Furthermore, the composition of morphisms Hom ( A , B ) Hom ( B , C ) Hom ( A , C ) {\displaystyle \operatorname {Hom} (A,B)\otimes \operatorname {Hom} (B,C)\rightarrow \operatorname {Hom} (A,C)} is required to be a map of complexes, and for all objects A of the category, one requires d ( id A ) = 0 {\displaystyle d(\operatorname {id} _{A})=0} .