complete redundancy - определение. Что такое complete redundancy
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое complete redundancy - определение

FINANCIAL INCENTIVE OFFERED BY AN ORGANISATION TO ENCOURAGE EMPLOYEES TO VOLUNTARILY RESIGN
Voluntary Redundancy; Redundancy contract
Найдено результатов: 656
Redundancy in United Kingdom law         
RIGHTS OF EMPLOYEES IF THEY ARE DISMISSED FOR ECONOMIC REASONS IN UK LABOUR LAW
User:RichsLaw/Redundancy in English law; Redundancy in English law
Redundancy in United Kingdom law concerns the rights of employees if they are dismissed for economic reasons in UK labour law.
complete graph         
SIMPLE UNDIRECTED GRAPH IN WHICH EVERY PAIR OF DISTINCT VERTICES IS CONNECTED BY A UNIQUE EDGE
Full graph; Complete Digraph; Complete digraph; K n; Tetrahedral Graph; Complete graphs
A graph which has a link between every pair of nodes. A complete bipartite graph can be partitioned into two subsets of nodes such that each node is joined to every node in the other subset. (1995-01-24)
cyclic redundancy check         
TYPE OF HASH FUNCTION USED TO DETECT ERRORS IN DATA STORAGE OR TRANSMISSION
Cyclic Redundancy Check; FCS-32; Cyclic redundancy code; CRC16; Crc64; Crc32 mpeg2; Crc16; Cyclic redundancy checks; CRC-24; CRC-16; CRC-8; CRC-64; Cyclical redundancy checking; CRC-CCITT; CRC-12; Crc32c; CRC32c; CRC8; Cyclic redundancy; Cyclic redundancy checksum; CRC-32C; CRC-32K; CRC check; CRC Values; Polynomial representations of cyclic redundancy checks; Polynomial CRC representations; List of CRC polynomials
<algorithm> (CRC or "cyclic redundancy code") A number derived from, and stored or transmitted with, a block of data in order to detect corruption. By recalculating the CRC and comparing it to the value originally transmitted, the receiver can detect some types of transmission errors. A CRC is more complicated than a checksum. It is calculated using division either using shifts and exclusive ORs or table lookup (modulo 256 or 65536). The CRC is "redundant" in that it adds no information. A single corrupted bit in the data will result in a one bit change in the calculated CRC but multiple corrupted bits may cancel each other out. CRCs treat blocks of input bits as coefficient-sets for polynomials. E.g., binary 10100000 implies the polynomial: 1*x^7 + 0*x^6 + 1*x^5 + 0*x^4 + 0*x^3 + 0*x^2 + 0*x^1 + 0*x^0. This is the "message polynomial". A second polynomial, with constant coefficients, is called the "generator polynomial". This is divided into the message polynomial, giving a quotient and remainder. The coefficients of the remainder form the bits of the final CRC. So, an order-33 generator polynomial is necessary to generate a 32-bit CRC. The exact bit-set used for the generator polynomial will naturally affect the CRC that is computed. Most CRC implementations seem to operate 8 bits at a time by building a table of 256 entries, representing all 256 possible 8-bit byte combinations, and determining the effect that each byte will have. CRCs are then computed using an input byte to select a 16- or 32-bit value from the table. This value is then used to update the CRC. Ethernet packets have a 32-bit CRC. Many disk formats include a CRC at some level. (1997-08-02)
cyclic redundancy code         
TYPE OF HASH FUNCTION USED TO DETECT ERRORS IN DATA STORAGE OR TRANSMISSION
Cyclic Redundancy Check; FCS-32; Cyclic redundancy code; CRC16; Crc64; Crc32 mpeg2; Crc16; Cyclic redundancy checks; CRC-24; CRC-16; CRC-8; CRC-64; Cyclical redundancy checking; CRC-CCITT; CRC-12; Crc32c; CRC32c; CRC8; Cyclic redundancy; Cyclic redundancy checksum; CRC-32C; CRC-32K; CRC check; CRC Values; Polynomial representations of cyclic redundancy checks; Polynomial CRC representations; List of CRC polynomials
Cyclic redundancy check         
TYPE OF HASH FUNCTION USED TO DETECT ERRORS IN DATA STORAGE OR TRANSMISSION
Cyclic Redundancy Check; FCS-32; Cyclic redundancy code; CRC16; Crc64; Crc32 mpeg2; Crc16; Cyclic redundancy checks; CRC-24; CRC-16; CRC-8; CRC-64; Cyclical redundancy checking; CRC-CCITT; CRC-12; Crc32c; CRC32c; CRC8; Cyclic redundancy; Cyclic redundancy checksum; CRC-32C; CRC-32K; CRC check; CRC Values; Polynomial representations of cyclic redundancy checks; Polynomial CRC representations; List of CRC polynomials
A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents.
Complete (complexity)         
NOTION OF THE "HARDEST" OR "MOST GENERAL" PROBLEM IN A COMPLEXITY CLASS
Complete problem; Hard (complexity)
In computational complexity theory, a computational problem is complete for a complexity class if it is, in a technical sense, among the "hardest" (or "most expressive") problems in the complexity class.
♯P-complete         
COMPLEXITY CLASS
Sharp-P-Complete; Sharp P complete; Number-P hard; Number-P-complete; Sharp-P hard; Sharp-P-complete
The #P-complete problems (pronounced "sharp P complete" or "number P complete") form a complexity class in computational complexity theory. The problems in this complexity class are defined by having the following two properties:
Chain-complete partial order         
POSET COMPLETION
Chain complete; Chain completeness
In mathematics, specifically order theory, a partially ordered set is chain-complete if every chain in it has a least upper bound. It is ω-complete when every increasing sequence of elements (a type of countable chain) has a least upper bound; the same notion can be extended to other cardinalities of chains..
NP-complete         
  • Levin]] proved that each easy-to-verify problem can be solved as fast as SAT, which is hence NP-complete.
  • P≠NP]], while the right side is valid under the assumption that P=NP (except that the empty language and its complement are never NP-complete, and in general, not every problem in P or NP is NP-complete)
  • reductions]] typically used to prove their NP-completeness
COMPLEXITY CLASS
NP-complete problem; NP-complete problems; NP complete; NP completeness; NP-C; Np complete; Np-complete; NP-complete language; Np-complete problem; NP-Completeness; Np completeness; Non-deterministic polynomial-time complete; NP-Complete; Nondeterministic Polynomial Complete; Non polynomial complete; Np-Complete; NP-complete; NP-incomplete
<complexity> (NPC, Nondeterministic Polynomial time complete) A set or property of computational decision problems which is a subset of NP (i.e. can be solved by a nondeterministic Turing Machine in polynomial time), with the additional property that it is also NP-hard. Thus a solution for one NP-complete problem would solve all problems in NP. Many (but not all) naturally arising problems in class NP are in fact NP-complete. There is always a polynomial-time algorithm for transforming an instance of any NP-complete problem into an instance of any other NP-complete problem. So if you could solve one you could solve any other by transforming it to the solved one. The first problem ever shown to be NP-complete was the satisfiability problem. Another example is {Hamilton's problem}. See also computational complexity, halting problem, Co-NP, NP-hard. http://fi-www.arc.nasa.gov/fia/projects/bayes-group/group/NP/. [Other examples?] (1995-04-10)
Voluntary redundancy         
Voluntary redundancy (VR) is a financial incentive offered by an organisation to encourage employees to voluntarily resign, reed.co.

Википедия

Voluntary redundancy

Voluntary redundancy (VR) is a financial incentive offered by an organisation to encourage employees to voluntarily resign, typically in downsizing or restructuring situations. The purpose is to avoid compulsory redundancies or layoffs.