coth - определение. Что такое coth
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое coth - определение

MATHEMATICAL FUNCTION RELATED WITH TRIGONOMETRIC FUNCTIONS
Osborne's rule; Hyperbolic tangent; Hyperbolic sine; Hyperbolic cosine; Coth; Csch; Sech (function); Hyperbolic function; Hyperbolic secant; Hyperbolic trigonometric function; Tanh; Hyperbolic trig identities; Hyperbolic sin; Hyperbolic cosecant; Hyperbolic cotangent; Hyperbolic polar sine; Hyperbolic map; Hyperbolic trig functions; Hyperbolic trigonometric functions; Osborne rule; Hyperbolic curve; Hyperbolic sinusoid; Osborn's Rule; Sinh(x); Cosh(x); Tanh(x); Hyperbolic tan; Hyperbolic identities; Ctanh; Sinus hyperbolicus; Hyperbolic tangent function; Hyperbolic sinus; Coth(x); Osborn's rule; Cosh (mathematical function); Cosinus hyperbolicus; Tangens hyperbolicus; Cosecans hyperbolicus; Cotangens hyperbolicus; Secans hyperbolicus; Hyberbolic sine; Hyberbolic cosine; Hyberbolic tangent; Hyberbolic cotangent; Hyberbolic secant; Hyberbolic cosecant; Cosech; Sh (mathematical function); Ch (mathematical function); Th (mathematical function); Cth (mathematical function); Sinh (mathematical function); Hyperbolic ‍secant; Tanh (mathematical function); Hyper-sine
  • u}}.
  • ''e''<sup>−''x''</sup>}}
  • ''e''<sup>−''x''</sup>}}
  • animated version]] with comparison with the trigonometric (circular) functions).

coth         
[k??, k?t'e?t?]
¦ abbreviation hyperbolic cotangent.
Origin
from cot3 + -h for hyperbolic.
Yacolla (garment)         
Yacolla (coth); Yacolla (cloth)
Yacolla was an outer garment in the Inca men's clothing that was similar to a mantle worn over the Uncu.
Hyperbolic functions         
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola.

Википедия

Hyperbolic functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity.

The basic hyperbolic functions are:

  • hyperbolic sine "sinh" (),
  • hyperbolic cosine "cosh" (),

from which are derived:

  • hyperbolic tangent "tanh" (),
  • hyperbolic cosecant "csch" or "cosech" ()
  • hyperbolic secant "sech" (),
  • hyperbolic cotangent "coth" (),

corresponding to the derived trigonometric functions.

The inverse hyperbolic functions are:

  • area hyperbolic sine "arsinh" (also denoted "sinh−1", "asinh" or sometimes "arcsinh")
  • area hyperbolic cosine "arcosh" (also denoted "cosh−1", "acosh" or sometimes "arccosh")
  • and so on.

The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is twice the area of its hyperbolic sector. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector.

In complex analysis, the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are entire functions. As a result, the other hyperbolic functions are meromorphic in the whole complex plane.

By Lindemann–Weierstrass theorem, the hyperbolic functions have a transcendental value for every non-zero algebraic value of the argument.

Hyperbolic functions were introduced in the 1760s independently by Vincenzo Riccati and Johann Heinrich Lambert. Riccati used Sc. and Cc. (sinus/cosinus circulare) to refer to circular functions and Sh. and Ch. (sinus/cosinus hyperbolico) to refer to hyperbolic functions. Lambert adopted the names, but altered the abbreviations to those used today. The abbreviations sh, ch, th, cth are also currently used, depending on personal preference.