cyclic neighborhood - определение. Что такое cyclic neighborhood
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое cyclic neighborhood - определение

SUBGRAPH MADE OF ALL NODES LINKED TO A GIVEN NODE OF A GRAPH
Neighborhood (graph theory); Adjacent vertex; Adjacent vertices; Locally cyclic graph

Cyclic peptide         
  • α-Amanitin]]
  • [[Bacitracin]]
  • [[Ciclosporin]]
PEPTIDE CHAINS WHICH CONTAIN A CIRCULAR SEQUENCE OF BONDS
Cyclic peptides; Peptides, cyclic; Cyclic polypeptides; Cyclic protein; Cyclic polypeptide; Cyclopeptides; Cyclopeptide; Peptide macrocycle
Cyclic peptides are polypeptide chains which contain a circular sequence of bonds. This can be through a connection between the amino and carboxyl ends of the peptide, for example in cyclosporin; a connection between the amino end and a side chain, for example in bacitracin; the carboxyl end and a side chain, for example in colistin; or two side chains or more complicated arrangements, for example in amanitin.
Cyclic order         
TERNARY RELATION THAT IS CYCLIC (IF [𝑥,𝑦,𝑧] THEN [𝑧,𝑥,𝑦]), ASYMMETRIC (IF [𝑥,𝑦,𝑧] THEN NOT [𝑧,𝑦,𝑥]), TRANSITIVE (IF [𝑤,𝑥,𝑦] AND [𝑤,𝑦,𝑧] THEN [𝑤,𝑥,𝑧]) AND CONNECTED (FOR DISTINCT 𝑥,𝑦,𝑧
Cyclic sequence; Circular order; Circular ordering; Total cyclic order; Cyclically ordered set; Cyclic ordering; Complete cyclic order; Linear cyclic order; L-cyclic order; Circularly ordered set
In mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "".
Courtyard neighborhood         
  • [[Beit David]] courtyard neighborhood in Jerusalem
  •  Map of [[Mea Shearim]], a courtyard neighborhood in Jerusalem
TYPE OF NEIGHBORHOOD CENTERED AROUND A COURTYARD
Yard Neighborhood; Yard neighborhood
Courtyard neighborhoods are Jewish neighborhoods built in Jerusalem and Tel Aviv in the late 19th and early 20th centuries. The inward-facing and defensible traditional urban housing of the Near East, ordinarily occupied by an extended family, was adapted in these cases to serve a close-knit but genealogically unrelated community.

Википедия

Neighbourhood (graph theory)

In graph theory, an adjacent vertex of a vertex v in a graph is a vertex that is connected to v by an edge. The neighbourhood of a vertex v in a graph G is the subgraph of G induced by all vertices adjacent to v, i.e., the graph composed of the vertices adjacent to v and all edges connecting vertices adjacent to v.

The neighbourhood is often denoted N G ( v ) {\displaystyle N_{G}(v)} or (when the graph is unambiguous) N ( v ) {\displaystyle N(v)} . The same neighbourhood notation may also be used to refer to sets of adjacent vertices rather than the corresponding induced subgraphs. The neighbourhood described above does not include v itself, and is more specifically the open neighbourhood of v; it is also possible to define a neighbourhood in which v itself is included, called the closed neighbourhood and denoted by N G [ v ] {\displaystyle N_{G}[v]} . When stated without any qualification, a neighbourhood is assumed to be open.

Neighbourhoods may be used to represent graphs in computer algorithms, via the adjacency list and adjacency matrix representations. Neighbourhoods are also used in the clustering coefficient of a graph, which is a measure of the average density of its neighbourhoods. In addition, many important classes of graphs may be defined by properties of their neighbourhoods, or by symmetries that relate neighbourhoods to each other.

An isolated vertex has no adjacent vertices. The degree of a vertex is equal to the number of adjacent vertices. A special case is a loop that connects a vertex to itself; if such an edge exists, the vertex belongs to its own neighbourhood.