cylindrical integral - определение. Что такое cylindrical integral
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое cylindrical integral - определение

MAP PROJECTION
Miller projection; Miller cylindrical; Miller Cylindrical; World Miller Cylindrical; Miller cylindrical map projection
  • A Miller projection of the [[Earth]].
  • Miller projection with 1,000 km indicatrices of distortion.

Henstock–Kurzweil integral         
GENERALIZATION OF THE RIEMANN INTEGRAL
Henstock-Kurzweil Integral; Perron integral; Gauge integral; Henstock integral; Denjoy Integral; Henstock-Kurzweil-Stieltjes integral; Perron Integral; Henstock-Kurzweil-Stieltjes Integral; Generalized Riemann integral; Denjoy-Perron integral; Henstock-Kurzweil integral; H-K integral
In mathematics, the Henstock–Kurzweil integral or generalized Riemann integral or gauge integral – also known as the (narrow) Denjoy integral (pronounced ), Luzin integral or Perron integral, but not to be confused with the more general wide Denjoy integral – is one of a number of inequivalent definitions of the integral of a function. It is a generalization of the Riemann integral, and in some situations is more general than the Lebesgue integral.
Pettis integral         
Weak integral; Gelfand-Pettis integral; Gelfand–Pettis integral; Gelfand integral; Dunford integral
In mathematics, the Pettis integral or Gelfand–Pettis integral, named after Israel M. Gelfand and Billy James Pettis, extends the definition of the Lebesgue integral to vector-valued functions on a measure space, by exploiting duality.
Improper integral         
  • The improper integral<br/><math>\int_{0}^{\infty} \frac{dx}{(x+1)\sqrt{x}} = \pi</math><br/> has unbounded intervals for both domain and range.
  • The improper integral<br/><math>\int_{-1}^{1} \frac{dx}{\sqrt[3]{x^2}} = 6</math><br/> converges, since both left and right limits exist, though the integrand is unbounded near an interior point.
  • An improper Riemann integral of the second kind. The integral may fail to exist because of a [[vertical asymptote]] in the function.
LIMIT OF A DEFINITE INTEGRAL WITH AS ONE OR BOTH LIMITS APPROACH INFINITY OR VALUES AT WHICH THE INTEGRAND IS UNDEFINED
Improper Riemann integral; Improper integrals; Improper Integrals; Proper integral
In mathematical analysis, an improper integral is the limit of a definite integral as an endpoint of the interval(s) of integration approaches either a specified real number or positive or negative infinity; or in some instances as both endpoints approach limits. Such an integral is often written symbolically just like a standard definite integral, in some cases with infinity as a limit of integration.

Википедия

Miller cylindrical projection

The Miller cylindrical projection is a modified Mercator projection, proposed by Osborn Maitland Miller in 1942. The latitude is scaled by a factor of 45, projected according to Mercator, and then the result is multiplied by 54 to retain scale along the equator. Hence:

or inversely,

where λ is the longitude from the central meridian of the projection, and φ is the latitude. Meridians are thus about 0.733 the length of the equator.

In GIS applications, this projection is known as: "ESRI:54003 – World Miller Cylindrical".

Compact Miller projection is similar to Miller but spacing between parallels stops growing after 55 degrees.