homotopy associativity - определение. Что такое homotopy associativity
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое homotopy associativity - определение

UNIVERSAL BUNDLE DEFINED ON A CLASSIFYING SPACE
Homotopy quotient; Homotopy orbit space

Operator associativity         
PROPERTY THAT DETERMINES HOW OPERATORS OF THE SAME PRECEDENCE ARE GROUPED IN THE ABSENCE OF PARENTHESES
Right associative operator; Right associative; Left-associative; Right-associative; Left associative; Left associativity; Right associativity
In programming language theory, the associativity of an operator is a property that determines how operators of the same precedence are grouped in the absence of parentheses. If an operand is both preceded and followed by operators (for example, ^ 3 ^), and those operators have equal precedence, then the operand may be used as input to two different operations (i.
Homotopy         
  • isotopy]].
CONTINUOUS DEFORMATION BETWEEN TWO CONTINUOUS MAPS
Homotopic; Homotopy equivalent; Homotopy equivalence; Homotopy invariant; Homotopy class; Null-homotopic; Homotopy type; Nullhomotopic; Homotopy invariance; Homotopy of maps; Homotopically equivalent; Homotopic maps; Homotopy of paths; Homotopical; Homotopy classes; Null-homotopy; Null homotopy; Nullhomotopic map; Null homotopic; Relative homotopy; Homotopy retract; Continuous deformation; Relative homotopy class; Homotopy-equivalent; Homotopy extension and lifting property; Isotopy (topology); Homotopies
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.
Mapping cone (topology)         
  • function]] <math>f \colon X \to Y</math>.
TOPOLOGICAL CONSTRUCTION
Homotopy cofiber; Cofiber
In mathematics, especially homotopy theory, the mapping cone is a construction C_f of topology, analogous to a quotient space. It is also called the homotopy cofiber, and also notated Cf.

Википедия

Universal bundle

In mathematics, the universal bundle in the theory of fiber bundles with structure group a given topological group G, is a specific bundle over a classifying space BG, such that every bundle with the given structure group G over M is a pullback by means of a continuous map MBG.