hyperbolic$36650$ - определение. Что такое hyperbolic$36650$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое hyperbolic$36650$ - определение

SPACE WHERE EVERY POINT LOCALLY RESEMBLES A HYPERBOLIC SPACE
Hyperbolic n-manifold; Hyperbolic manifolds; Hyperbolic metric
  • The [[Pseudosphere]]. Each half of this shape is a hyperbolic 2-manifold (i.e. surface) with boundary.
  • center

Hyperbolic trajectory         
  • gravitational potential well]] of the central mass shows potential energy, and the kinetic energy of the hyperbolic trajectory is shown in red. The height of the kinetic energy decreases as the speed decreases and distance increases according to Kepler's laws. The part of the kinetic energy that remains above zero total energy is that associated with the hyperbolic excess velocity.
  • Hyperbolic trajectories followed by objects approaching central object (small dot) with same hyperbolic excess velocity (and semi-major axis (=1)) and from same direction but with different impact parameters and eccentricities. The yellow line indeed passes around the central dot, approaching it closely.
TRAJECTORY OF ANY OBJECT AROUND A CENTRAL BODY WITH MORE THAN ENOUGH SPEED TO ESCAPE THE CENTRAL OBJECT'S GRAVITATIONAL PULL
Hyperbolic orbit; Hyperbolic Orbit; Hyperbolic excess velocity; Radial hyperbolic trajectory; Radial hyperbolic orbit
In astrodynamics or celestial mechanics, a hyperbolic trajectory is the trajectory of any object around a central body with more than enough speed to escape the central object's gravitational pull. The name derives from the fact that according to Newtonian theory such an orbit has the shape of a hyperbola.
Hyperbolic space         
HOMOGENEOUS SPACE THAT HAS A CONSTANT NEGATIVE CURVATURE (NOT ANY HYPERBOLIC MANIFOLD)
Hyperbolic 3-space; Real hyperbolic space; Hyperbolic Space; Hyperbolic spaces; Hyperbolic Spaces; H^n
In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space.
Hyperbolic link         
  • 4<sub>1</sub> knot]]
  • [[Borromean rings]] are a hyperbolic link.
TYPE OF MATHEMATICAL LINK
Hyperbolic knot
In mathematics, a hyperbolic link is a link in the 3-sphere with complement that has a complete Riemannian metric of constant negative curvature, i.e.

Википедия

Hyperbolic manifold

In mathematics, a hyperbolic manifold is a space where every point looks locally like hyperbolic space of some dimension. They are especially studied in dimensions 2 and 3, where they are called hyperbolic surfaces and hyperbolic 3-manifolds, respectively. In these dimensions, they are important because most manifolds can be made into a hyperbolic manifold by a homeomorphism. This is a consequence of the uniformization theorem for surfaces and the geometrization theorem for 3-manifolds proved by Perelman.