hypercube - определение. Что такое hypercube
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое hypercube - определение

CONVEX POLYTOPE, THE N-DIMENSIONAL ANALOGUE OF A SQUARE AND A CUBE
Measure polytope; N-cube; K-cube; Hypercubes; 11-cube; Hendekeract; Dodekeract; 12-cube; Hypercubic; N-dimensional cube; 20-cube; 16-cube; 30-cube; 50-cube; 48-cube; 45-cube; 40-cube; 32-cube; 25-cube; 24-cube; 36-cube; 42-cube; 35-cube; 21-cube; 18-cube; 17-cube; 15-cube; 14-cube; 13-cube
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 160px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 160px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 160px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 160px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 160px
  • 100px
  • 100px
  • 100px
  • 100px
  • 160px
  • 100px
  • 100px
  • 100px
  • rotating]] [[tesseract]].
  • 160px
  • 100px
  • 100px
  • 100px
  • 160px
  • A diagram showing how to create a tesseract from a point.
  • An animation showing how to create a tesseract from a point.
  • 190px
  • 190px

hypercube         
¦ noun a geometrical figure in four or more dimensions which is analogous to a cube in three dimensions.
hypercube         
A cube of more than three dimensions. A single (2^0 = 1) point (or "node") can be considered as a zero dimensional cube, two (2^1) nodes joined by a line (or "edge") are a one dimensional cube, four (2^2) nodes arranged in a square are a two dimensional cube and eight (2^3) nodes are an ordinary three dimensional cube. Continuing this geometric progression, the first hypercube has 2^4 = 16 nodes and is a four dimensional shape (a "four-cube") and an N dimensional cube has 2^N nodes (an "N-cube"). To make an N+1 dimensional cube, take two N dimensional cubes and join each node on one cube to the corresponding node on the other. A four-cube can be visualised as a three-cube with a smaller three-cube centred inside it with edges radiating diagonally out (in the fourth dimension) from each node on the inner cube to the corresponding node on the outer cube. Each node in an N dimensional cube is directly connected to N other nodes. We can identify each node by a set of N Cartesian coordinates where each coordinate is either zero or one. Two node will be directly connected if they differ in only one coordinate. The simple, regular geometrical structure and the close relationship between the coordinate system and binary numbers make the hypercube an appropriate topology for a parallel computer interconnection network. The fact that the number of directly connected, "nearest neighbour", nodes increases with the total size of the network is also highly desirable for a parallel computer. (1994-11-17)
Hypercube         
In geometry, a hypercube is an n-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.

Википедия

Hypercube

In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3). It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length. A unit hypercube's longest diagonal in n dimensions is equal to n {\displaystyle {\sqrt {n}}} .

An n-dimensional hypercube is more commonly referred to as an n-cube or sometimes as an n-dimensional cube. The term measure polytope (originally from Elte, 1912) is also used, notably in the work of H. S. M. Coxeter who also labels the hypercubes the γn polytopes.

The hypercube is the special case of a hyperrectangle (also called an n-orthotope).

A unit hypercube is a hypercube whose side has length one unit. Often, the hypercube whose corners (or vertices) are the 2n points in Rn with each coordinate equal to 0 or 1 is called the unit hypercube.