non-absorbent - определение. Что такое non-absorbent
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое non-absorbent - определение

SET THAT CAN BE "INFLATED" TO REACH ANY POINT
Absorbent set

Non-place         
  • [[Baggage reclaim]] at [[Beijing Capital International Airport]].
CONCEPT IN ANTHROPOLOGY
Nonplace; Non-lieu; Non-lieux; Non place
Non-place or nonplace is a neologism coined by the French anthropologist Marc Augé to refer to anthropological spaces of transience where human beings remain anonymous, and that do not hold enough significance to be regarded as "places" in their anthropological definition. Examples of non-places would be motorways, hotel rooms, airports and shopping malls.
Non-heterosexual         
SEXUAL ORIENTATION OTHER THAN HETEROSEXUAL / STRAIGHT
Non-heterosexuals; Nonheterosexual; Non‐heterosexual; Non-straight; Non-heterosexuality
Non-heterosexual is a word for a sexual orientation or sexual identity that is not heterosexual. The term helps define the "concept of what is the norm and how a particular group is different from that norm".
Non-Inscrits         
MEMBERS OF THE EUROPEAN PARLIAMENT NOT IN A POLITICAL GROUP
Non-Attached; Non-attached; Non-inscrits; Non-Inscrit; Non-inscrit; Non-Attached Members
Non-Inscrits (; abbreviated NI; also non-attached members, abbreviated NA) are Members of the European Parliament (MEP) who do not belong to one of the recognised political groups.

Википедия

Absorbing set

In functional analysis and related areas of mathematics an absorbing set in a vector space is a set S {\displaystyle S} which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorbent set. Every neighborhood of the origin in every topological vector space is an absorbing subset.