nonoverlapping sets - определение. Что такое nonoverlapping sets
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое nonoverlapping sets - определение

Definable sets

Family of sets         
COLLECTION OF SOME OF THE SUBSETS OF A SET; COLLECTION OF ANY SETS WHATSOEVER
Set system; Set family; Set of sets; Family of subsets
In set theory and related branches of mathematics, a collection of subsets of a given set is called a family of subsets of , or a family of sets over . More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system.
fuzzy subset         
  • Some Key Developments in the Introduction of Fuzzy Set Concepts.<ref name="CADsurvey"/>
SETS WHOSE ELEMENTS HAVE DEGREES OF MEMBERSHIP
Fuzzy sets; Fuzzy set theory; Fuzzification; Fuzzy subset; Credibility(fuzzy); Fuzzy category; Goguen category; Fuzzy Sets; Fuzzy relation equation; Pythagorean fuzzy set; Degree of membership; Uncertain set
In fuzzy logic, a fuzzy subset F of a set S is defined by a "membership function" which gives the degree of membership of each element of S belonging to F.
Projections onto convex sets         
  • Example of '''averaged projections''' variant
  • Example on two circles
In mathematics, projections onto convex sets (POCS), sometimes known as the alternating projection method, is a method to find a point in the intersection of two closed convex sets. It is a very simple algorithm and has been rediscovered many times.

Википедия

Definable set

In mathematical logic, a definable set is an n-ary relation on the domain of a structure whose elements satisfy some formula in the first-order language of that structure. A set can be defined with or without parameters, which are elements of the domain that can be referenced in the formula defining the relation.