rationals - определение. Что такое rationals
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое rationals - определение

COMPLEX NUMBER OF THE FORM P + QI, WHERE P AND Q ARE BOTH RATIONAL NUMBERS
Complex rationals; Gaussian rational number; Gaussian rationals

Gaussian rational         
In mathematics, a Gaussian rational number is a complex number of the form p + qi, where p and q are both rational numbers.
Dyadic rational         
  • Real numbers with no unusually-accurate dyadic rational approximations. The red circles surround numbers that are approximated within error <math>\tfrac16/2^i</math> by <math>n/2^i</math>. For numbers in the fractal [[Cantor set]] outside the circles, all dyadic rational approximations have larger errors.
  • Dyadic rational approximations to the [[square root of 2]] (<math>\sqrt{2}\approx 1.4142</math>), found by rounding to the nearest smaller integer multiple of <math>1/2^i</math> for <math>i=0,1,2,\dots</math> The height of the pink region above each approximation is its error.
RATIONAL NUMBER WHOSE DENOMINATOR IS A POWER OF TWO
Dyadic solenoid; Dyadic fraction; Dyadic rational number; Dyadic rationals; Dyadic numbers
In mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not.
Rational irrationality         
ECONOMICS CONCEPT
Rational Irrationality
The concept known as rational irrationality was popularized by economist Bryan Caplan in 2001 to reconcile the widespread existence of irrational behavior (particularly in the realms of religion and politics) with the assumption of rationality made by mainstream economics and game theory. The theory, along with its implications for democracy, was expanded upon by Caplan in his book The Myth of the Rational Voter.

Википедия

Gaussian rational

In mathematics, a Gaussian rational number is a complex number of the form p + qi, where p and q are both rational numbers. The set of all Gaussian rationals forms the Gaussian rational field, denoted Q(i), obtained by adjoining the imaginary number i to the field of rationals Q.