split epimorphism - определение. Что такое split epimorphism
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое split epimorphism - определение

RIGHT INVERSE OF A MORPHISM
Split epimorphism; Section (homological algebra); Retraction (category theory); Sectionable (category theory); Retractable (category theory); Coretraction; Split monomorphism; Retract (category theory); Retract (metric geometry); Split mono

Section (category theory)         
In category theory, a branch of mathematics, a section is a right inverse of some morphism. Dually, a retraction is a left inverse of some morphism.
Split album         
MUSIC ALBUM WHICH INCLUDES TRACKS BY TWO OR MORE SEPARATE ARTISTS
Split record; Split EP; Split albums; Split Album; Split CD; Split ep; Split single (music)
A split album (or split) is a music album that includes tracks by two or more separate artists. There are also singles and EPs of the same variety, which are often called "split singles" and "split EPs" respectively.
Split pea         
  • A sack of split peas
THE DRIED AND SPLIT SEED OF PISUM SATIVUM
Split-peas; Split-pea; Split peas; Yellow split pea; Yellow split peas; Split Pea
Split peas are an agricultural or culinary preparation consisting of the dried, peeled and split seeds of Pisum sativum, the pea.

Википедия

Section (category theory)

In category theory, a branch of mathematics, a section is a right inverse of some morphism. Dually, a retraction is a left inverse of some morphism. In other words, if f : X Y {\displaystyle f:X\to Y} and g : Y X {\displaystyle g:Y\to X} are morphisms whose composition f g : Y Y {\displaystyle f\circ g:Y\to Y} is the identity morphism on Y {\displaystyle Y} , then g {\displaystyle g} is a section of f {\displaystyle f} , and f {\displaystyle f} is a retraction of g {\displaystyle g} .

Every section is a monomorphism (every morphism with a left inverse is left-cancellative), and every retraction is an epimorphism (every morphism with a right inverse is right-cancellative).

In algebra, sections are also called split monomorphisms and retractions are also called split epimorphisms. In an abelian category, if f : X Y {\displaystyle f:X\to Y} is a split epimorphism with split monomorphism g : Y X {\displaystyle g:Y\to X} , then X {\displaystyle X} is isomorphic to the direct sum of Y {\displaystyle Y} and the kernel of f {\displaystyle f} . The synonym coretraction for section is sometimes seen in the literature, although rarely in recent work.