split extension - определение. Что такое split extension
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое split extension - определение

GROUP FOR WHICH A GIVEN GROUP IS A NORMAL SUBGROUP
Extension problem; Extension (algebra); Split extension; Extension of a group; Central extension (mathematics)
  • Figure 1

Group extension         
In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If Q and N are two groups, then G is an extension of Q by N if there is a short exact sequence
Split album         
MUSIC ALBUM WHICH INCLUDES TRACKS BY TWO OR MORE SEPARATE ARTISTS
Split record; Split EP; Split albums; Split Album; Split CD; Split ep; Split single (music)
A split album (or split) is a music album that includes tracks by two or more separate artists. There are also singles and EPs of the same variety, which are often called "split singles" and "split EPs" respectively.
Split pea         
  • A sack of split peas
THE DRIED AND SPLIT SEED OF PISUM SATIVUM
Split-peas; Split-pea; Split peas; Yellow split pea; Yellow split peas; Split Pea
Split peas are an agricultural or culinary preparation consisting of the dried, peeled and split seeds of Pisum sativum, the pea.

Википедия

Group extension

In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If Q {\displaystyle Q} and N {\displaystyle N} are two groups, then G {\displaystyle G} is an extension of Q {\displaystyle Q} by N {\displaystyle N} if there is a short exact sequence

1 N ι G π Q 1. {\displaystyle 1\to N\;{\overset {\iota }{\to }}\;G\;{\overset {\pi }{\to }}\;Q\to 1.}

If G {\displaystyle G} is an extension of Q {\displaystyle Q} by N {\displaystyle N} , then G {\displaystyle G} is a group, ι ( N ) {\displaystyle \iota (N)} is a normal subgroup of G {\displaystyle G} and the quotient group G / ι ( N ) {\displaystyle G/\iota (N)} is isomorphic to the group Q {\displaystyle Q} . Group extensions arise in the context of the extension problem, where the groups Q {\displaystyle Q} and N {\displaystyle N} are known and the properties of G {\displaystyle G} are to be determined. Note that the phrasing " G {\displaystyle G} is an extension of N {\displaystyle N} by Q {\displaystyle Q} " is also used by some.

Since any finite group G {\displaystyle G} possesses a maximal normal subgroup N {\displaystyle N} with simple factor group G / N {\displaystyle G/N} , all finite groups may be constructed as a series of extensions with finite simple groups. This fact was a motivation for completing the classification of finite simple groups.

An extension is called a central extension if the subgroup N {\displaystyle N} lies in the center of G {\displaystyle G} .