strip coordinates - определение. Что такое strip coordinates
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое strip coordinates - определение

COORDINATE SYSTEM IN WHICH THE LOCATION OF A POINT OF A SIMPLEX IS SPECIFIED AS THE CENTER OF MASS, OR BARYCENTER, OF USUALLY UNEQUAL MASSES PLACED AT ITS VERTICES
Areal coordinates; Areal Coordinates; Area coordinates; Generalized barycentric coordinates; Barycentric coordinates (mathematics); Barycentric coordinate system (mathematics); Barycentric coordinates (geometry)
  • Barycentric coordinates are used for blending three colors over a triangular region evenly in computer graphics.
  • Surface (upper part) obtained from linear interpolation over a given triangular grid (lower part) in the ''x'',''y'' plane. The surface approximates a function ''z''=''f''(''x'',''y''), given only the values of ''f'' on the grid's vertices.

Homogeneous coordinates         
MATHEMATICS
Homogenous coordinates; Homogeneous coordinate; Homogeneous co-ordinates; Homogeneous coordinate system; Projective coordinates; Homogeneous Coordinates; Homogenous coordinate
In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work ,August Ferdinand Möbius: Der barycentrische Calcul, Verlag von Johann Ambrosius Barth, Leipzig, 1827.
Lemaître coordinates         
PARTICULAR SET OF COORDINATES FOR THE SCHWARZSCHILD METRIC
Lemaitre coordinates; Lemaitre metric; Lemaître Coordinates; Lemaître metric
Lemaître coordinates are a particular set of coordinates for the Schwarzschild metric—a spherically symmetric solution to the Einstein field equations in vacuum—introduced by Georges Lemaître in 1932. English translation: See also:  … Changing from Schwarzschild to Lemaître coordinates removes the coordinate singularity at the Schwarzschild radius.
Caprivi Strip         
  • Map of the Caprivi
  • Georg Leo Graf von Caprivi de Caprera de Montecuccoli]], who gave his name to the Caprivi Strip
  • Village in the Caprivi Strip
GEOGRAPHICAL AREA OF NORTH-EASTERN NAMIBIA
Caprivi strip; Okavango Strip
The Caprivi Strip, also known simply as Caprivi, is a geographic salient protruding from the northeastern corner of Namibia. It is surrounded by Botswana to the south and Angola and Zambia to the north.

Википедия

Barycentric coordinate system

In geometry, a barycentric coordinate system is a coordinate system in which the location of a point is specified by reference to a simplex (a triangle for points in a plane, a tetrahedron for points in three-dimensional space, etc.). The barycentric coordinates of a point can be interpreted as masses placed at the vertices of the simplex, such that the point is the center of mass (or barycenter) of these masses. These masses can be zero or negative; they are all positive if and only if the point is inside the simplex.

Every point has barycentric coordinates, and their sum is not zero. Two tuples of barycentric coordinates specify the same point if and only if they are proportional; that is to say, if one tuple can be obtained by multiplying the elements of the other tuple by the same non-zero number. Therefore, barycentric coordinates are either considered to be defined up to multiplication by a nonzero constant, or normalized for summing to unity.

Barycentric coordinates were introduced by August Möbius in 1827. They are special homogenous coordinates. Barycentric coordinates are strongly related with Cartesian coordinates and, more generally, to affine coordinates (see Affine space § Relationship between barycentric and affine coordinates).

Barycentric coordinates are particularly useful in triangle geometry for studying properties that do not depend on the angles of the triangle, such as Ceva's theorem, Routh's theorem, and Menelaus's theorem. In computer-aided design, they are useful for defining some kinds of Bézier surfaces.