sulfate$80104$ - определение. Что такое sulfate$80104$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое sulfate$80104$ - определение

MICROORGANISMS WHICH "BREATHE" SULFATES
Sulfate reducing bacteria; Sulphate-reducing bacteria; Sulfate-reducing bacterium; Sulfate-reducing bacteria; Sulfur-breathing organisms; Sulfate-reducing microorganisms; Sulfate reducer; Sulfate-reducing; Sulfate reducers
  • Overview of the three key enzymatic steps of the dissimilatory sulfate reduction pathway. Enzymes: ''sat'' and ''atps'' respectively stand for sulfate adenylyltransferase and ATP sulfurylase (EC 2.7.7.4); ''apr'' and ''aps'' are both used to adenosine-5'-phosphosulfate reductase (EC 1.8.4.8); and ''dsr'' is the dissimilatory (bi)sulfite reductase (EC 1.8.99.5);
  • ''[[Desulfovibrio vulgaris]]'' is the best-studied sulfate-reducing microorganism species; the bar in the upper right is 0.5 [[micrometre]] long.
  • Sludge from a pond; the black color is due to metal sulfides that result from the action of sulfate-reducing microorganisms.

Sulfate conjugate         
CLASS OF CHEMICAL COMPOUNDS
Sulfate conjugates
Sulfate conjugates are a heterogeneous class of polar, anionic organosulfate compounds containing an ester of sulfuric acid. Sulfate conjugates commonly result from the metabolic conjugation of endogenous and exogenous compounds with sulfate (-OSO3−).
Ethinylestradiol sulfate         
CHEMICAL COMPOUND
Ethinylestradiol 3-sulfate; Ethynylestradiol 3-sulfate; Ethynylestradiol sulfate; 17α-ethynylestradiol 3-sulfate; 17α-Ethynylestradiol 3-sulfate; EE sulfate; EE-sulfate; EE2-sulfate; EE2 sulfate; EE2 3-sulfate; EE 3-sulfate
Ethinylestradiol sulfate (EE sulfate), also known as 17α-ethynylestradiol 3-sulfate, is an estrogen ester – specifically, the C3 sulfuric acid (sulfate) ester of the synthetic estrogen ethinylestradiol (EE) – and is the major metabolite of EE. Circulating levels of EE sulfate range from 6 to 22 times those of EE when EE is taken orally.
Organosulfate         
ANY ESTER DERIVED FROM SULFURIC ACID
Sulfate ester; Organosulphate; Alkylsulfuric acid; Alkyl sulfate; Sodium alkyl sulfate; Alkyl sulfuric acid
Organosulfates are a class of organic compounds sharing a common functional group with the structure R-O-SO3−. The SO4 core is a sulfate group and the R group is any organic residue.

Википедия

Sulfate-reducing microorganism

Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate (SO2−
4
) as terminal electron acceptor, reducing it to hydrogen sulfide (H2S). Therefore, these sulfidogenic microorganisms "breathe" sulfate rather than molecular oxygen (O2), which is the terminal electron acceptor reduced to water (H2O) in aerobic respiration.

Most sulfate-reducing microorganisms can also reduce some other oxidized inorganic sulfur compounds, such as sulfite (SO2−
3
), dithionite (S
2
O2−
4
), thiosulfate (S
2
O2−
3
), trithionate (S
3
O2−
6
), tetrathionate (S
4
O2−
6
), elemental sulfur (S8), and polysulfides (S2−
n
). Depending on the context, "sulfate-reducing microorganisms" can be used in a broader sense (including all species that can reduce any of these sulfur compounds) or in a narrower sense (including only species that reduce sulfate, and excluding strict thiosulfate and sulfur reducers, for example).

Sulfate-reducing microorganisms can be traced back to 3.5 billion years ago and are considered to be among the oldest forms of microbes, having contributed to the sulfur cycle soon after life emerged on Earth.

Many organisms reduce small amounts of sulfates in order to synthesize sulfur-containing cell components; this is known as assimilatory sulfate reduction. By contrast, the sulfate-reducing microorganisms considered here reduce sulfate in large amounts to obtain energy and expel the resulting sulfide as waste; this is known as dissimilatory sulfate reduction. They use sulfate as the terminal electron acceptor of their electron transport chain. Most of them are anaerobes; however, there are examples of sulfate-reducing microorganisms that are tolerant of oxygen, and some of them can even perform aerobic respiration. No growth is observed when oxygen is used as the electron acceptor. In addition, there are sulfate-reducing microorganisms that can also reduce other electron acceptors, such as fumarate, nitrate (NO
3
), nitrite (NO
2
), ferric iron (Fe3+), and dimethyl sulfoxide (DMSO).

In terms of electron donor, this group contains both organotrophs and lithotrophs. The organotrophs oxidize organic compounds, such as carbohydrates, organic acids (such as formate, lactate, acetate, propionate, and butyrate), alcohols (methanol and ethanol), aliphatic hydrocarbons (including methane), and aromatic hydrocarbons (benzene, toluene, ethylbenzene, and xylene). The lithotrophs oxidize molecular hydrogen (H2), for which they compete with methanogens and acetogens in anaerobic conditions. Some sulfate-reducing microorganisms can directly use metallic iron (Fe0, also known as zerovalent iron, or ZVI) as electron donor, oxidizing it to ferrous iron (Fe2+).