term algebra - определение. Что такое term algebra
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое term algebra - определение


Term algebra         
FREELY GENERATED ALGEBRAIC STRUCTURE OVER A GIVEN SIGNATURE
Herbrand Universe; Herbrand atom set; Herbrand term
In universal algebra and mathematical logic, a term algebra is a freely generated algebraic structure over a given signature. For example, in a signature consisting of a single binary operation, the term algebra over a set X of variables is exactly the free magma generated by X.
Term (logic)         
  • x*(y*z)}}
  • ''Left to right:'' tree structure of the term (''n''⋅(''n''+1))/2 and ''n''⋅((''n''+1)/2)
MATHEMATICAL EXPRESSION THAT MAY FORM A SEPARABLE PART OF AN EQUATION, A SERIES, OR ANOTHER EXPRESSION; USED IN IN MATHEMATICAL LOGIC, UNIVERSAL ALGEBRA, AND REWRITING SYSTEMS
Term (first-order logic); Logic term; Variant (logic); Term (term rewriting); Linear term; Context (term rewriting); Subterm; Finite terms; First-order terms; Subterms; Renamed copy
In mathematical logic, a term denotes a mathematical object while a formula denotes a mathematical fact. In particular, terms appear as components of a formula.
*-algebra         
ALGEBRA EQUIPPED WITH AN INVOLUTION OVER A *-RING
Star algebra; *-homomorphism; * algebra; Involution algebra; Involutive algebra; *-ring; Star-algebra; * ring; Involutory ring; Involutary ring; Star ring; *algebra; Involutive ring
In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra) is a mathematical structure consisting of two involutive rings and , where is commutative and has the structure of an associative algebra over . Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints.