uniformizing surface - определение. Что такое uniformizing surface
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое uniformizing surface - определение

PRINCIPAL IDEAL DOMAIN THAT IS A LOCAL RING AND NOT A FIELD
M-adic topology; Uniformizing parameter; Uniformizing element; Uniformizer; Uniformiser; Uniformizers; Uniformisers; Uniformising parameter; Uniformising element

Surface finish         
  • How a profilometer works
  • 500px
  • Examples of various lay patterns
SMALL, LOCAL DEVIATIONS OF A SURFACE FROM A PERFECTLY FLAT IDEAL; DEFINED BY THE THREE CHARACTERISTICS OF LAY, SURFACE ROUGHNESS, AND WAVINESS
Surface texture symbol; Surface texture; Surface topography
Surface finish, also known as surface texture or surface topography, is the nature of a surface as defined by the three characteristics of lay, surface roughness, and waviness.. It comprises the small, local deviations of a surface from the perfectly flat ideal (a true plane).
Parametric surface         
  • 1= ''z'' = (''R'' + ''r'' cos ''v'') cos ''u''}}.
  • Parametric surface forming a [[trefoil knot]], equation details in the attached source code.
SURFACE IN THE EUCLIDEAN SPACE
Parametrized surface; Parametrised surface; Parametrized Surface; Surface parameterisation; Parametric object
A parametric surface is a surface in the Euclidean space \R^3 which is defined by a parametric equation with two parameters Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that occur in two of the main theorems of vector calculus, Stokes' theorem and the divergence theorem, are frequently given in a parametric form.
Planetary surface         
  • surface]] of the [[Moon]], which consists of [[lunar regolith]] (photographed by [[Neil Armstrong]], July 1969).
  • Perseverance]] rover.
  • Perspective radar view of Titan's [[Bolsena Lacus]] (lower right) and other northern hemisphere hydrocarbon lakes
  • access-date=24 July 2015 }}</ref>
  • Full-sized image]])''
  • Sand dunes in the [[Namib Desert]] on Earth (top), compared with dunes in Belet on Titan
WHERE THE SOLID (OR LIQUID) MATERIAL OF THE OUTER CRUST ON CERTAIN TYPES OF ASTRONOMICAL OBJECTS CONTACTS THE ATMOSPHERE OR OUTER SPACE
Planet surface; Surface (astronomy); Surfacism; Surface chauvinism
A planetary surface is where the solid or liquid material of certain types of astronomical objects contacts the atmosphere or outer space. Planetary surfaces are found on solid objects of planetary mass, including terrestrial planets (including Earth), dwarf planets, natural satellites, planetesimals and many other small Solar System bodies (SSSBs).

Википедия

Discrete valuation ring

In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal.

This means a DVR is an integral domain R which satisfies any one of the following equivalent conditions:

  1. R is a local principal ideal domain, and not a field.
  2. R is a valuation ring with a value group isomorphic to the integers under addition.
  3. R is a local Dedekind domain and not a field.
  4. R is a Noetherian local domain whose maximal ideal is principal, and not a field.
  5. R is an integrally closed Noetherian local ring with Krull dimension one.
  6. R is a principal ideal domain with a unique non-zero prime ideal.
  7. R is a principal ideal domain with a unique irreducible element (up to multiplication by units).
  8. R is a unique factorization domain with a unique irreducible element (up to multiplication by units).
  9. R is Noetherian, not a field, and every nonzero fractional ideal of R is irreducible in the sense that it cannot be written as a finite intersection of fractional ideals properly containing it.
  10. There is some discrete valuation ν on the field of fractions K of R such that R = {0} {\displaystyle \cup } {x {\displaystyle \in } K : ν(x) ≥ 0}.