urban tunneling - определение. Что такое urban tunneling
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое urban tunneling - определение

QUANTUM MECHANICAL PHENOMENON
Tunneling effect; Quantum mechanical tunneling; Tunnel (quantum mechanics); Tunneling Effect; Electron tunneling; Barrier penetration; Barrier tunneling; Quantum tunneling; Quantum Tunneling; Barrier Penetration; Tunneling barrier; Tunnelling barrier; Quantum mechanical tunnelling; Tunneling time; Wave-mechanical tunneling
  • Chaos-assisted tunnelling oscillations between two regular tori embedded in a chaotic sea, seen in phase space
  • alt=
  • alt=
  • alt=
  • STM]]
  • Quantum tunneling oscillations of probability in an integrable double well of potential, seen in phase space
  • A working mechanism of a [[resonant tunnelling diode]] device, based on the phenomenon of quantum tunnelling through the potential barriers
  • alt=
  • Hamiltonian]] <math>H(x,p) = p^2 / 2 + U(x) </math>.

Quantum tunnelling         
Quantum tunnelling, also known as tunneling (US) is a quantum mechanical phenomenon whereby a wavefunction can propagate through a potential barrier.
Urban Hjärne         
  • Urban Hjärne bust
SWEDISH SCHOLAR, CHEMIST AND PHYSICIST (1641-1724)
Urban Hiärne; Urban Hjarne; Urban Hiarne
Urban Hjärne (20 December 1641 – 10 March 1724) was a Swedish chemist, geologist, physician and writer.
Scanning tunneling microscope         
  • A large STM setup at the [[London Centre for Nanotechnology]]
  • Scanning tunneling microscope operating principle
  • Schematic view of an STM
  • A 1986 STM from the collection of [[Musée d'histoire des sciences de la Ville de Genève]]
  • The real and imaginary parts of the wave function in a rectangular potential barrier model of the scanning tunneling microscope
  • Tip, barrier and sample wave functions in a model of the scanning tunneling microscope. Barrier width is ''w''. Tip bias is ''V''. Surface work functions are ''ϕ''.
  • Negative sample bias ''V'' raises its electronic levels by ''e⋅V''. Only electrons that populate states between the Fermi levels of the sample and the tip are allowed to tunnel.
A MICROSCOPE USED FOR LOOKING AT ATOMS.
Electron tunnel microscopy; Scanning tunneling; Scanning Tunneling Microscope; Scanning tunneling microscopy; Scanning tunnelling microscope; Scanning tunnelling microscopy; Microscopy, scanning tunneling; Scanning-tunneling microscope; Scanning Tunneling Microscopy; STM microscope; Josephson tunneling microscope
A scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986.

Википедия

Quantum tunnelling

In physics, quantum tunnelling, barrier penetration, or simply tunnelling is a quantum mechanical phenomenon in which an object such as an electron or atom passes through a potential energy barrier that, according to classical mechanics, the object does not have sufficient energy to enter or surmount.

Tunneling is a consequence of the wave nature of matter, where the quantum wave function describes the state of a particle or other physical system, and wave equations such as the Schrödinger equation describe their behavior. The probability of transmission of a wave packet through a barrier decreases exponentially with the barrier height, the barrier width, and the tunneling particle's mass, so tunneling is seen most prominently in low-mass particles such as electrons or protons tunneling through microscopically narrow barriers. Tunneling is readily detectable with barriers of thickness about 1–3 nm or smaller for electrons, and about 0.1 nm or smaller for heavier particles such as protons or hydrogen atoms. Some sources describe the mere penetration of a wave function into the barrier, without transmission on the other side, as a tunneling effect.

Tunneling plays an essential role in physical phenomena such as nuclear fusion and alpha radioactive decay of atomic nuclei. Tunneling applications include the tunnel diode, quantum computing, flash memory, and the scanning tunneling microscope. Tunneling limits the minimum size of devices used in microelectronics because electrons tunnel readily through insulating layers and transistors that are thinner than about 1 nm.

The effect was predicted in the early 20th century. Its acceptance as a general physical phenomenon came mid-century.