ماء$1$ - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

ماء$1$ - перевод на Английский

DIVERGENT SERIES
1+1+1+···; 1 + 1 + 1 + 1 + 1 + · · ·; 1 + 1 + 1 + 1 + · · ·; 1 + 1 + 1 + 1 + …; 1 + 1 + 1 + 1 + ...; Zeta(0)
  • alt=A graph showing a line that dips just below the ''y''-axis

ماء      
mew, purr
ساد         
  • امرأة من جنوب أفريقيا تبصر من جديد بعد عملية جراحيّة لإزالة السّاد
  • صورة باستخدام مجهر المصباح الشِّقِّيّ تظهر تعتيم أماميّ للمحفطة بعد أشهر قليلة من عمليّة زرع العدسة في باطن العين، صورة مكبّرة
  • قطة مصابة بالسّاد في كلا العينين
  • العمليّة الجراحيّة لإزالة السّاد، باستخدام طريقة استحلاب العدسة، باليد اليمنى يوجد مسبار استحلاب العدسة، وباليد اليسرى توجد أداة القطع، ويجري العمل تحت المجهر الجراحيّ في مركز طبّي تابع للبحريّة
  • السّاد في كِلا العينين لدى رضيع بسبب متلازمة الحصبة الألمانيّة الخلقيّة
  • >990}} {{نهاية أعمدة متعددة}}
  • مثال على رؤية بوجود مرض السّاد
  • مثال على رؤية طبيعية
  • مقطع عرضي في العين البشريّة يوضّح موقع العدسة فيها
  •  صورة باستخدام مجهر المصباح الشِّقِّيّ تظهر تعتيم خلفيّ للمحفظة بعد أشهر قليلة من عمليّة زرع العدسة في باطن العين، في حالة إضاءة خلفيّة
مرض يصيب العين يسبب إعتام عدسة العين ما يؤدي إلى صعوبة فى الرؤية
ماء ابيض; ماء أبيض; الماء الابيض; المياه البيضاء; Cataract; ساد; مرض الساد; الكاتاراكت; سد (عين)

obturator

ساد         
  • امرأة من جنوب أفريقيا تبصر من جديد بعد عملية جراحيّة لإزالة السّاد
  • صورة باستخدام مجهر المصباح الشِّقِّيّ تظهر تعتيم أماميّ للمحفطة بعد أشهر قليلة من عمليّة زرع العدسة في باطن العين، صورة مكبّرة
  • قطة مصابة بالسّاد في كلا العينين
  • العمليّة الجراحيّة لإزالة السّاد، باستخدام طريقة استحلاب العدسة، باليد اليمنى يوجد مسبار استحلاب العدسة، وباليد اليسرى توجد أداة القطع، ويجري العمل تحت المجهر الجراحيّ في مركز طبّي تابع للبحريّة
  • السّاد في كِلا العينين لدى رضيع بسبب متلازمة الحصبة الألمانيّة الخلقيّة
  • >990}} {{نهاية أعمدة متعددة}}
  • مثال على رؤية بوجود مرض السّاد
  • مثال على رؤية طبيعية
  • مقطع عرضي في العين البشريّة يوضّح موقع العدسة فيها
  •  صورة باستخدام مجهر المصباح الشِّقِّيّ تظهر تعتيم خلفيّ للمحفظة بعد أشهر قليلة من عمليّة زرع العدسة في باطن العين، في حالة إضاءة خلفيّة
مرض يصيب العين يسبب إعتام عدسة العين ما يؤدي إلى صعوبة فى الرؤية
ماء ابيض; ماء أبيض; الماء الابيض; المياه البيضاء; Cataract; ساد; مرض الساد; الكاتاراكت; سد (عين)
plosive

Определение

one
the upper limit of intoxication or exhaustion
after the second pint of gin, i was hard one-ing

Википедия

1 + 1 + 1 + 1 + ⋯

In mathematics, 1 + 1 + 1 + 1 + ⋯, also written n = 1 n 0 {\displaystyle \sum _{n=1}^{\infty }n^{0}} , n = 1 1 n {\displaystyle \sum _{n=1}^{\infty }1^{n}} , or simply n = 1 1 {\displaystyle \sum _{n=1}^{\infty }1} , is a divergent series, meaning that its sequence of partial sums does not converge to a limit in the real numbers. The sequence 1n can be thought of as a geometric series with the common ratio 1. Unlike other geometric series with rational ratio (except −1), it converges in neither the real numbers nor in the p-adic numbers for some p. In the context of the extended real number line

n = 1 1 = + , {\displaystyle \sum _{n=1}^{\infty }1=+\infty \,,}

since its sequence of partial sums increases monotonically without bound.

Where the sum of n0 occurs in physical applications, it may sometimes be interpreted by zeta function regularization, as the value at s = 0 of the Riemann zeta function:

ζ ( s ) = n = 1 1 n s = 1 1 2 1 s n = 1 ( 1 ) n + 1 n s . {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{1-2^{1-s}}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{s}}}\,.}

The two formulas given above are not valid at zero however, but the analytic continuation is.

ζ ( s ) = 2 s π s 1   sin ( π s 2 )   Γ ( 1 s )   ζ ( 1 s ) , {\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\ \sin \left({\frac {\pi s}{2}}\right)\ \Gamma (1-s)\ \zeta (1-s)\!,}

Using this one gets (given that Γ(1) = 1),

ζ ( 0 ) = 1 π lim s 0   sin ( π s 2 )   ζ ( 1 s ) = 1 π lim s 0   ( π s 2 π 3 s 3 48 + . . . )   ( 1 s + . . . ) = 1 2 {\displaystyle \zeta (0)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \sin \left({\frac {\pi s}{2}}\right)\ \zeta (1-s)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \left({\frac {\pi s}{2}}-{\frac {\pi ^{3}s^{3}}{48}}+...\right)\ \left(-{\frac {1}{s}}+...\right)=-{\frac {1}{2}}}

where the power series expansion for ζ(s) about s = 1 follows because ζ(s) has a simple pole of residue one there. In this sense 1 + 1 + 1 + 1 + ⋯ = ζ(0) = −1/2.

Emilio Elizalde presents a comment from others about the series:

In a short period of less than a year, two distinguished physicists, A. Slavnov and F. Yndurain, gave seminars in Barcelona, about different subjects. It was remarkable that, in both presentations, at some point the speaker addressed the audience with these words: 'As everybody knows, 1 + 1 + 1 + ⋯ = −1/2.' Implying maybe: If you do not know this, it is no use to continue listening.