it"ll$41164$ - перевод на
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

it"ll$41164$ - перевод на

LEFT-TO-RIGHT, LEFTMOST DERIVATION TOP-DOWN PARSER FOR A SUBSET OF CONTEXT-FREE LANGUAGES
LL(1); LL parsing; LL(k); LL Parsing table; LL(1) language; LL1; Left factoring; LL(k) parser

it'll      
v. het zal
do it yourself         
  • Fiberglass dome house, California, in style of the Whole Earth Catalog building techniques
  • ''Electronics World'' 1959, home assembled amplifier
  • Mennonite woman [[dressmaking]] (1942)
  • Shelves attached to a toy vehicle
  • Drink mixing robot
  • San Mateo]], 2016
  • [[Zine]]s, London
BUILDING, MODIFYING, OR REPAIRING SOMETHING WITHOUT THE AID OF EXPERTS OR PROFESSIONALS
DIY not EMI; DIY ethic; D.I.Y.; Do-it-yourself; DIY Punk Ethic; DIY; Do it for me; DIY punk ethic; D.I.Y; Do-It-Yourself; Do It Yourself; Guerrilla punk; DIY culture; DIY Culture; Diy culture; Guerrilla Rock; Guerrilla rock; Guerrilla Punk; Diyism; DIY media; DIY ethic of punk; DIY ethos; Do it yourself ethic; Do-it-yourself ethic; D-I-Y; DIY film; Resolver (Cuba); Resolver spirit; Resolver ethos
zelf doen, zelf voor elkaar brengen
deserves it         
ALBUM BY KHALIL
Deserves It; Distance (Khalil song); Know Enough; More (Khalil song); Pressure (Khalil song); Prove It All (song); Quality (Khalil song); Realized (Khalil song); Simple (Khalil song); The Obvious (song); Too Far (Khalil song)
hij heeft het verdient

Определение

ll.
¦ abbreviation (in textual references) lines.

Википедия

LL parser

In computer science, an LL parser (Left-to-right, leftmost derivation) is a top-down parser for a restricted context-free language. It parses the input from Left to right, performing Leftmost derivation of the sentence.

An LL parser is called an LL(k) parser if it uses k tokens of lookahead when parsing a sentence. A grammar is called an LL(k) grammar if an LL(k) parser can be constructed from it. A formal language is called an LL(k) language if it has an LL(k) grammar. The set of LL(k) languages is properly contained in that of LL(k+1) languages, for each k ≥ 0. A corollary of this is that not all context-free languages can be recognized by an LL(k) parser.

An LL parser is called LL-regular (LLR) if it parses an LL-regular language. The class of LLR grammars contains every LL(k) grammar for every k. For every LLR grammar there exists an LLR parser that parses the grammar in linear time.

Two nomenclative outlier parser types are LL(*) and LL(finite). A parser is called LL(*)/LL(finite) if it uses the LL(*)/LL(finite) parsing strategy. LL(*) and LL(finite) parsers are functionally more closely resemblant to PEG parsers. An LL(finite) parser can parse an arbitrary LL(k) grammar optimally in the amount of lookahead and lookahead comparisons. The class of grammars parsable by the LL(*) strategy encompasses some context-sensitive languages due to the use of syntactic and semantic predicates and has not been identified. It has been suggested that LL(*) parsers are better thought of as TDPL parsers. Against the popular misconception, LL(*) parsers are not LLR in general, and are guaranteed by construction to perform worse on average (super-linear against linear time) and far worse in the worst-case (exponential against linear time).

LL grammars, particularly LL(1) grammars, are of great practical interest, as parsers for these grammars are easy to construct, and many computer languages are designed to be LL(1) for this reason. LL parsers may be table-based, i.e. similar to LR parsers, but LL grammars can also be parsed by recursive descent parsers. According to Waite and Goos (1984), LL(k) grammars were introduced by Stearns and Lewis (1969).