vectors in quadrature - перевод на голландский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

vectors in quadrature - перевод на голландский

NUMERICAL INTEGRATION
Gaussian integration; Gaussian numerical integration; Gauss quadrature; Gauss legendre quadrature; Gaussian Quadrature; Gauss–Lobatto quadrature; Gauss-Lobatto quadrature
  • 2}} – 3''x'' + 3}}), the 2-point Gaussian quadrature rule even returns an exact result.
  • ''n'' {{=}} 5)}}

vectors in quadrature      
vectoren van kwadratuur
squaring the circle         
  • ''[[Vitruvian Man]]''
  • Heisel's 1934 book
  • ABC}} (found by [[Hippocrates of Chios]]).
GEOMETRIC PROBLEM
Quadrature of the circle; Square the circle; Squaring a circle; Circle Squaring; Circle-squaring; Squaring of the circle; Circle-squarer; Squaring the Circle; Circle squaring; Quadrature of the Circle
van een cirkel een vierkant maken (probleem zonder oplossing)
mother-in-law         
PARENT OF ONE'S SPOUSE
Mother-in-Law; Mother in law; Father-in-Law; Father in law; Mother in Law; Parents-in-law; Parents in law; Law parents; Law-parents; Parent in law; Law-parent; Law parent; Mother-in-law; Father-in-law
schoonmoeder

Определение

Quadrature
Waves or periodic motions the angle of lag of one of which, with reference to one in advance of it, is 90°, are said to be in quadrature with each other. [Transcriber's note: If the voltage and current of a power line are in quadrature, the power factor is zero (cos(90°) = 0)  and no real power is delivered to the load.]

Википедия

Gaussian quadrature

In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the nodes xi and weights wi for i = 1, …, n. The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as [−1, 1], so the rule is stated as

1 1 f ( x ) d x i = 1 n w i f ( x i ) , {\displaystyle \int _{-1}^{1}f(x)\,dx\approx \sum _{i=1}^{n}w_{i}f(x_{i}),}

which is exact for polynomials of degree 2n − 1 or less. This exact rule is known as the Gauss-Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f (x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1].

The Gauss-Legendre quadrature rule is not typically used for integrable functions with endpoint singularities. Instead, if the integrand can be written as

f ( x ) = ( 1 x ) α ( 1 + x ) β g ( x ) , α , β > 1 , {\displaystyle f(x)=\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x),\quad \alpha ,\beta >-1,}

where g(x) is well-approximated by a low-degree polynomial, then alternative nodes xi' and weights wi' will usually give more accurate quadrature rules. These are known as Gauss-Jacobi quadrature rules, i.e.,

1 1 f ( x ) d x = 1 1 ( 1 x ) α ( 1 + x ) β g ( x ) d x i = 1 n w i g ( x i ) . {\displaystyle \int _{-1}^{1}f(x)\,dx=\int _{-1}^{1}\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x)\,dx\approx \sum _{i=1}^{n}w_{i}'g\left(x_{i}'\right).}

Common weights include 1 1 x 2 {\textstyle {\frac {1}{\sqrt {1-x^{2}}}}} (Chebyshev–Gauss) and 1 x 2 {\displaystyle {\sqrt {1-x^{2}}}} . One may also want to integrate over semi-infinite (Gauss-Laguerre quadrature) and infinite intervals (Gauss–Hermite quadrature).

It can be shown (see Press, et al., or Stoer and Bulirsch) that the quadrature nodes xi are the roots of a polynomial belonging to a class of orthogonal polynomials (the class orthogonal with respect to a weighted inner-product). This is a key observation for computing Gauss quadrature nodes and weights.