Fabry$27136$ - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Fabry$27136$ - перевод на Английский

AN OPTICAL INTERFEROMETER MADE FROM TWO PARALLEL MIRRORS
Etalon; Fabry-Perot; Fabry-Perot Interferometer; Fabry-Perot Étalon; Fabry-Perot interferometer; Fabry-Perot etalon; Fabry-Perot étalon; Coefficient of Finesse; Coefficient of finesse; Fabry-Pérot etalon; Fabry perot etalon; Fabry Perot etalon; Fabry-Perot Etalon; Étalon; Fabry-Pérot étalon; Fabry-Pérot; Fabry Pérot etalon; Fabry Pérot étalon; Fabry Perot; Fabry Pérot; Fabry-Pérot interferometer; Fabry–Perot interferometer; Fabry–Pérot interferometers; Fabry-Perot device; Fabry–Perot etalon; Fabry–Pérot etalon; Fabry–Pérot; Fabry–Pérot laser; Fabry-Perot laser; Fabry-Pérot laser; Fabry-Pérot interferometers; Faby-Perot filter; Fabry-Perot filter; Fabry–Pérot interferometry; Finesse Coefficient; Fabry-Pérot interferometry; Fabry Pérot interferometer
  • Airy distribution <math> A_\text{trans}^{\prime} </math> (solid lines), corresponding to light transmitted through a Fabry–Pérot resonator, calculated for different values of the reflectivities <math> R_1 = R_2 </math>, and comparison with a single Lorentzian line (dashed lines) calculated for the same <math> R_1 = R_2 </math>.<ref  name=IsmailPollnau2016/> At half maximum (black line), with decreasing reflectivities the FWHM linewidth <math> \Delta \nu_\text{Airy} </math> of the Airy distribution broadens compared to the FWHM linewidth <math> \Delta \nu_c </math> of its corresponding Lorentzian line: <math> R_1 = R_2 = 0.9, 0.6, 0.32, 0.172 </math> results in <math> \Delta \nu_\text{Airy} / \Delta \nu_c = 1.001, 1.022, 1.132, 1.717 </math>, respectively.
  •  The physical meaning of the Airy finesse <math> \mathcal{F}_{\rm Airy} </math> of a Fabry–Pérot resonator.<ref  name=IsmailPollnau2016/> When scanning the Fabry–Pérot length (or the angle of incident light), Airy distributions (colored solid lines) are created by signals at individual frequencies. The experimental result of the measurement is the sum of the individual Airy distributions (black dashed line). If the signals occur at frequencies <math> \nu_m = \nu_q + m \Delta \nu_{\rm Airy} </math>, where <math> m </math> is an integer starting at <math> q </math>, the Airy distributions at adjacent frequencies are separated from each other by the linewidth <math> \Delta \nu_{\rm Airy} </math>, thereby fulfilling the Taylor criterion for the spectroscopic resolution of two adjacent peaks. The maximum number of signals that can be resolved is <math> \mathcal{F}_{\rm Airy} </math>. Since in this specific example the reflectivities <math> R_1 = R_2 = 0.59928 </math> have been chosen such that <math> \mathcal{F}_{\rm Airy} = 6 </math> is an integer, the signal for <math> m = \mathcal{F}_{\rm Airy} </math> at the frequency <math> \nu_q + \mathcal{F}_{\rm Airy} \Delta \nu_{\rm Airy} = \nu_q + \Delta \nu_{\rm FSR} </math> coincides with the signal for <math> m = q </math> at <math> \nu_q </math>. In this example, a maximum of <math> \mathcal{F}_{\rm Airy} = 6 </math> peaks can be resolved when applying the Taylor criterion.
  • A commercial Fabry–Pérot device
  • Finesse as a function of reflectivity. Very high finesse factors require highly reflective mirrors.
  • Transient analysis of a silicon (''n'' = 3.4) Fabry–Pérot etalon at normal incidence. The upper animation is for etalon thickness chosen to give maximum transmission while the lower animation is for thickness chosen to give minimum transmission.
  • deuterium lamp]].
  • Fabry–Pérot interferometer, using a pair of partially reflective, slightly wedged optical flats. The wedge angle is highly exaggerated in this illustration; only a fraction of a degree is actually necessary to avoid ghost fringes. Low-finesse versus high-finesse images correspond to mirror reflectivities of 4% (bare glass) and 95%.
  • False color transient for a high refractive index, dielectric slab in air. The thickness/frequencies have been selected such that red (top) and blue (bottom) experience maximum transmission, whereas the green (middle) experiences minimum transmission.
  • A Fabry–Pérot etalon. Light enters the etalon and undergoes multiple internal reflections.
  • Example of a Fabry–Pérot resonator with (top) frequency-dependent mirror reflectivity and (bottom) the resulting distorted mode profiles <math> \gamma_{q,{\rm trans}}^{\prime} </math> of the modes with indices <math> q = 2000, 2001, 2002 </math>, the sum of 6 million mode profiles (pink dots, displayed for a few frequencies only), and the Airy distribution <math> A_{\rm trans}^{\prime} </math>.<ref name=IsmailPollnau2016/> The vertical dashed lines denote the maximum of the reflectivity curve (black) and the resonance frequencies of the individual modes (colored).
  • Lorentzian linewidth and finesse versus Airy linewidth and finesse of a Fabry–Pérot resonator.<ref name=IsmailPollnau2016/> [Left] Relative Lorentzian linewidth <math> \Delta \nu_c / \Delta \nu_{\rm FSR} </math> (blue curve), relative Airy linewidth <math> \Delta \nu_{\rm Airy} / \Delta \nu_{\rm FSR} </math> (green curve), and its approximation (red curve). [Right] Lorentzian finesse <math> \mathcal{F}_c </math> (blue curve), Airy finesse <math> \mathcal{F}_{\rm Airy} </math> (green curve), and its approximation (red curve) as a function of reflectivity value <math> R_1 R_2 </math>. The exact solutions of the Airy linewidth and finesse (green lines) correctly break down at <math> \Delta \nu_{\rm Airy} = \Delta \nu_{\rm FSR} </math>, equivalent to <math> \mathcal{F}_{\rm Airy} = 1 </math>, whereas their approximations (red lines) incorrectly do not break down. Insets: Region <math> R_1 R_2 < 0.1 </math>.
  • The physical meaning of the Lorentzian finesse <math> \mathcal{F}_c </math> of a Fabry–Pérot resonator.<ref name=IsmailPollnau2016/> Displayed is the situation for <math> R_1 = R_2 \approx 4.32\% </math>, at which <math> \Delta \nu_c = \Delta \nu_{\rm FSR} </math> and <math> \mathcal{F}_c = 1 </math>, i.e., two adjacent Lorentzian lines (dashed colored lines, only 5 lines are shown for clarity for each resonance frequency,<math> \nu_{q} </math>) cross at half maximum (solid black line) and the Taylor criterion for spectrally resolving two peaks in the resulting Airy distribution (solid purple line, the sum of 5 lines which has been normalized to the peak intensity of itself) is reached.
  • Resonance enhancement in a Fabry–Pérot resonator.<ref name=IsmailPollnau2016/> (top) Spectrally dependent internal resonance enhancement, equaling the generic Airy distribution <math> A_\text{circ} </math>. Light launched into the resonator is resonantly enhanced by this factor. For the curve with <math> R_1 = R_2 = 0.9</math>, the peak value is at <math> A_\text{circ}(\nu_q) = 100 </math>, outside the scale of the ordinate. (bottom) Spectrally dependent external resonance enhancement, equaling the Airy distribution <math> A_\text{circ}^{\prime} </math>. Light incident upon the resonator is resonantly enhanced by this factor.
  • Electric fields in a Fabry–Pérot resonator.<ref name=IsmailPollnau2016/> The electric-field mirror reflectivities are <math> r_1 </math> and <math> r_2 </math>. Indicated are the characteristic electric fields produced by an electric field <math> E_{\rm inc} </math> incident upon mirror 1: <math> E_{\rm refl,1} </math> initially reflected at mirror 1, <math> E_{\rm laun} </math> launched through mirror 1, <math> E_{\rm circ} </math> and <math> E_\text{b-circ} </math> circulating inside the resonator in forward and backward propagation direction, respectively, <math> E_{\rm RT} </math> propagating inside the resonator after one round trip, <math> E_{\rm trans} </math> transmitted through mirror 2, <math> E_{\rm back} </math> transmitted through mirror 1, and the total field <math> E_{\rm refl} </math> propagating backward. Interference occurs at the left- and right-hand sides of mirror 1 between <math> E_{\rm refl,1} </math> and <math> E_{\rm back} </math>, resulting in <math> E_{\rm refl} </math>, and between <math> E_{\rm laun} </math> and <math> E_{\rm RT} </math>, resulting in <math> E_{\rm circ} </math>, respectively.

Fabry      
n. Fabry, apellido; Johannes Fabry (1860-1930), dermatólogo alemán (el mal de Fabry fue nombrado en su honor); gran cráter lunar
Johannes Fabry         
  • Johannes Fabry (ca. 1925)
GERMAN PHYSICIAN (1860-1930)
n. Johannes Fabry (1860-1930), dermatólogo alemán

Определение

etalon
['?t?l?n]
¦ noun Physics a device consisting of two reflecting plates, for producing interfering light beams.
Origin
early 20th cent.: from Fr. etalon, lit. 'standard of measurement'.

Википедия

Fabry–Pérot interferometer

In optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical cavity made from two parallel reflecting surfaces (i.e.: thin mirrors). Optical waves can pass through the optical cavity only when they are in resonance with it. It is named after Charles Fabry and Alfred Perot, who developed the instrument in 1899. Etalon is from the French étalon, meaning "measuring gauge" or "standard".

Etalons are widely used in telecommunications, lasers and spectroscopy to control and measure the wavelengths of light. Recent advances in fabrication technique allow the creation of very precise tunable Fabry–Pérot interferometers. The device is technically an interferometer when the distance between the two surfaces (and with it the resonance length) can be changed, and an etalon when the distance is fixed (however, the two terms are often used interchangeably).