Kurt Goedel - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Kurt Goedel - перевод на Английский

AUSTRIAN-AMERICAN LOGICIAN, MATHEMATICIAN, AND PHILOSOPHER OF MATHEMATICS (1906-1978)
Kurt Goedel; Gödel; Kurt Godel; Goedel; Gödel, K; Gödel, K.; Kurt gödel; K. Gödel; K. Goedel; Goedel, K; Goedel, K.; Godel, K.; Kurt godel; Godel, K; Kurt goedel; K. Godel; Kurt Friedrich Gödel; Godel; Religious views of Kurt Gödel
  • de}}, [[Vienna]], where he discovered his incompleteness theorems
  • Gravestone of Kurt and Adele Gödel in the Princeton, N.J., cemetery

Kurt Goedel         
Kurt Goedel (1906-1978), matemático y logístico de origen Checo
Kurt Vonnegut         
  • [[Dresden]] in 1945. More than 90% of the city's center was destroyed.
  • Vonnegut in army uniform during [[World War II]]
  • Vonnegut as a teenager, from the [[Shortridge High School]] 1940 yearbook
  • [[Kurt Vonnegut Museum and Library]] in 2022
  • A large painting of Vonnegut on [[Massachusetts Avenue, Indianapolis]], blocks away from the Kurt Vonnegut Museum and the Rathskeller, which was designed by his family's architecture firm
  • Vonnegut with his wife Jane and children (from left to right): Mark, Edith and Nanette, in 1955
AMERICAN WRITER (1922–2007)
Kurt Vonnegut, Jr.; Kurt Vonnegut Jr.; Vonnegutian; Vonnegut hero; Kurt Vonnegut, Jr; Kurt Vonnegutt; Kurt vonnegutt; Kurt Vonneguet; Kurt Vonegut; Kurt Vonegut, Jr.; Kirk Vonagut; Kurt Vonagut; Vonnegut; Kurt Vonnegut Jr; K. Vonnegut
Kurt Vonnegut (escritor americano)
Kurt Waldheim         
  • alt=an Italian officer and three German officers in uniform standing beneath the wing of an aircraft on a grassed airfield
  • Waldheim c. 1971
  • Waldheim with family c. 1971
AUSTRIAN POLITICIAN AND DIPLOMAT (1918-2007)
Waldheimer's disease; Kurt Josef Waldheim; Kurt Valdheim; Waldheim affair
Kurt Waldheim (político y diplomático austríaco)

Определение

Goedel
<language> (After the mathematician Kurt Godel) A declarative, general-purpose language for {artificial intelligence} based on logic programming. It can be regarded as a successor to Prolog. The type system is based on many-sorted logic with parametric polymorphism. Modularity is supported, as well as {infinite precision arithmetic} and finite sets. Goedel has a rich collection of system modules and provides constraint solving in several domains. It also offers metalogical facilities that provide significant support for metaprograms that do analysis, transformation, compilation, verification, and debugging. A significant subset of Goedel has been implemented on top of SISCtus Prolog by Jiwei Wang <jiwei@lapu.bristol.ac.uk>. FTP Bristol, UK (ftp://ftp.cs.bris.ac.uk/goedel), {FTP K U Leuven (ftp://ftp.cs.kuleuven.ac.be/pub/logic-prgm/goedel)}. E-mail: <goedel@compsci.bristol.ac.uk>. (1995-05-02)

Википедия

Kurt Gödel

Kurt Friedrich Gödel ( GUR-dəl, German: [kʊʁt ˈɡøːdl̩] (listen); April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an immense effect upon scientific and philosophical thinking in the 20th century, a time when others such as Bertrand Russell, Alfred North Whitehead, and David Hilbert were using logic and set theory to investigate the foundations of mathematics, building on earlier work by the likes of Richard Dedekind, Georg Cantor and Frege.

Gödel's discoveries in the foundations of mathematics led to the proof of his completeness theorem in 1929 as part of his dissertation to earn a doctorate at the University of Vienna, and the publication of Gödel's incompleteness theorems two years later, in 1931. The first incompleteness theorem states that for any ω-consistent recursive axiomatic system powerful enough to describe the arithmetic of the natural numbers (for example, Peano arithmetic), there are true propositions about the natural numbers that can be neither proved nor disproved from the axioms. To prove this, Gödel developed a technique now known as Gödel numbering, which codes formal expressions as natural numbers. The second incompleteness theorem, which follows from the first, states that the system cannot prove its own consistency.

Gödel also showed that neither the axiom of choice nor the continuum hypothesis can be disproved from the accepted Zermelo–Fraenkel set theory, assuming that its axioms are consistent. The former result opened the door for mathematicians to assume the axiom of choice in their proofs. He also made important contributions to proof theory by clarifying the connections between classical logic, intuitionistic logic, and modal logic.