autopista de datos - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

autopista de datos - перевод на Английский

Analisis exploratorio de datos (prehistoria); Análisis exploratorio de datos (prehistoria); Analisis exploratorio de datos

autopista de datos      
n. information highway, nickname for the global computer networks which make up the Internet
búfer de datos         
REGIÓN DE UN ALMACENAMIENTO DE MEMORIA FÍSICA UTILIZADO PARA ALMACENAR DATOS TEMPORALMENTE MIENTRAS SE MUEVEN DE UN LUGAR A OTRO
Memoria intermedia; Bufer de datos; Búfer inteligente; Buffer de datos
(n.) = data buffer, data buffer
Ex: Data buffers receive data from the computer and let it "trickle through" to the printer at the appropriate speed, thus freeing the computer for the next task. Ex: Data buffers receive data from the computer and let it "trickle through" to the printer at the appropriate speed, thus freeing the computer for the next task.
memoria intermedia         
REGIÓN DE UN ALMACENAMIENTO DE MEMORIA FÍSICA UTILIZADO PARA ALMACENAR DATOS TEMPORALMENTE MIENTRAS SE MUEVEN DE UN LUGAR A OTRO
Memoria intermedia; Bufer de datos; Búfer inteligente; Buffer de datos
(n.) = buffer
Ex: Data buffers with interfaces can be obtained for between 150 pounds and 250 pounds depending on the buffer size.

Определение

costanera
plur. Maderos largos como vigas menores o cuartones, que cargan sobre la viga principal que forma el caballete de la cubierta de un edificio.

Википедия

Análisis exploratorio de datos

El análisis exploratorio de datos es una forma de analizar datos definido por John W. Tukey (E.D.A.: Exploratory data analysis) es el tratamiento estadístico al que se someten las muestras recogidas durante un proceso de investigación en cualquier campo científico. Para mayor rapidez y precisión, todo el proceso suele realizarse por medios informáticos, con aplicaciones específicas para el tratamiento estadístico. Los E.D.A., no necesariamente, se llevan a cabo con una base de datos al uso, ni con una hoja de cálculo convencional; no obstante el programa SPSS y los lenguajes de programación R y Python son las aplicaciones más utilizadas, aunque no las únicas.

Por ejemplo, en el campo de la Arqueología el análisis técnico de una pieza puede ser simultáneo a la introducción de los datos, bien porque las fichas estén directamente informatizadas o, bien, porque se usen formularios en papel cuyos datos sean fáciles de introducir en el ordenador o computadora. Es posible, incluso, usar en la propia excavación, una serie de PDAs conectados en red inalámbrica instalada en el yacimiento arqueológico, que envíen numerosos datos de campo a una base de datos central que luego se usarán con fines diversos, entre ellos este. Los pasos seguidos en el E. D. A. son básicamente dos:

  • Medición y descripción de los datos tecnológicos —tipológicos— y dimensiones, por medio de la Estadística descriptiva. Aquí tenemos, por un lado, las medidas de tendencia central (promedios que, en una sola cifra, resumen todos los valores de una muestra: media, mediana y moda son las más habituales) y, por otro, las medidas de dispersión (que calculan hasta qué punto la muestra se agrupa o no en torno a esos promedios). Dentro de este apartado, se ha de procurar, además, calibrar la confianza de las muestras a través de tres estadímetros básicos: la desviación estándar de la muestra, la curtosis y la asimetría.
La siguiente es una tabla de ejemplo:
  • Comparación de los caracteres de una muestra, o de varias muestras diferentes por medio de la Estadística inferencial. Las pruebas más frecuentemente utilizadas comienzan por las más sencillas comparaciones visuales —a través de gráficas como la campana de Gauss, nubes de dispersión o diagramas de caja y arbotantes—, pasando por las socorridas tablas de contingencia (incluido la prueba del χ2), y por los típicos Análisis de Varianza (que no es más que una confrontación muy precisa de los promedios de varias muestras), hasta llegar a los más complejos análisis multivariantes de conglomerados.
Yacimiento 1⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎫
Yacimiento 2⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎫⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎫                      ⎬⎯⎯⎯⎯⎯⎯⎯
Yacimiento 3⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎭                      ⎬⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎭
Yacimiento 4⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎭

Resultados del análisis de mulivariante de conglomerados por el método de Ward efectuado en los ciertos tipos líticos, computando variables tecnológicas. Es un ejemplo real, en él se permite observar la similitud o disparidad de los yacimientos seleccionados en virtud de una serie de parámetros seleccionados por el investigador.

Los cálculos estadísticos orientan sobre la fiabilidad de las muestras usadas, aunque no son infalibles, e indican si los resultados obtenidos al calcular las pruebas inferenciales son aceptables, es lo que llamamos nivel de confianza (se debe procurar que este nunca sea inferior al 95% = 0,95).