hyperbolic$36650$ - перевод на испанский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

hyperbolic$36650$ - перевод на испанский

SPACE WHERE EVERY POINT LOCALLY RESEMBLES A HYPERBOLIC SPACE
Hyperbolic n-manifold; Hyperbolic manifolds; Hyperbolic metric
  • The [[Pseudosphere]]. Each half of this shape is a hyperbolic 2-manifold (i.e. surface) with boundary.
  • center

hyperbolic      
adj. hiperbólico
hyperbolic         
WIKIMEDIA DISAMBIGUATION PAGE
Hyperbolic (disambiguation)
(adj.) = hiberbólico, exagerado, pronunciado, claramente diferenciado
Ex: The best known of these empirical hyperbolic distributions in library context is that of Bradford.
zillion         
TERMS EXPRESSING UNSPECIFIED AND MADE UP NUMBERS
Umpteen; Gazillion; Bajillion; Jillion; Bazillion; Gillion; Kajillion; Sagan (number); Squillion; Zillions; Bagillion; Quilliard; Grillion; Gagillion; Zilllionth; Upteenth; Gajillion; Umptillion; Gadzillion; Godzillion; Zillion; Hojillion; Gahzillion; Indefinite and fictitious large numbers; Umpteenth; Fifty-leven; Buzillion; Squillions; Indefinite numbers; Fictitious numbers; Umteen; Sagan's Number; Fictional numbers; Oodles; Unspecified numbers; Indefinite hyperbolic numeral
tropecientos

Определение

hyperbolic
If you describe language as hyperbolic, you mean that it makes something sound much more impressive than it really is. (TECHNICAL or FORMAL)
ADJ: usu ADJ n

Википедия

Hyperbolic manifold

In mathematics, a hyperbolic manifold is a space where every point looks locally like hyperbolic space of some dimension. They are especially studied in dimensions 2 and 3, where they are called hyperbolic surfaces and hyperbolic 3-manifolds, respectively. In these dimensions, they are important because most manifolds can be made into a hyperbolic manifold by a homeomorphism. This is a consequence of the uniformization theorem for surfaces and the geometrization theorem for 3-manifolds proved by Perelman.