lÓgico - перевод на испанский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

lÓgico - перевод на испанский

Método lógico inductivo; Metodo logico inductivo; Metodo lógico inductivo; Método logico inductivo

logic         
  • access-date=25 September 2022}}</ref>
  • [[Gottlob Frege]]'s ''[[Begriffschrift]]'' introduced the notion of quantifier in a graphical notation, which here represents the judgement that <math>\forall x. F(x)</math> is true.
  • date=2022}}</ref>
  • Formal logic needs to translate natural language arguments into a formal language, like first-order logic, in order to assess whether they are valid. In this example, the colors indicate how the English words correspond to the symbols.
  • The [[square of opposition]] is often used to visualize the relations between the four basic [[categorical propositions]] in Aristotelian logic. It shows, for example, that the propositions "All S are P" and "Some S are not P" are contradictory, meaning that one of them has to be true while the other is false.
  • Conjunction (AND) is one of the basic operations of boolean logic. It can be electronically implemented in several ways, for example, by using two [[transistor]]s.
  • Young America's dilemma: Shall I be wise and great, or rich and powerful? (poster from 1901) This is an example of a [[false Dilemma]]: an informal fallacy using a disjunctive premise that excludes viable alternatives.
  • access-date=29 September 2022}}</ref>
STUDY OF CORRECT REASONING
DefinitionOfLogic; Classical two-valued logic; Formal logic; Logical; Logician; Compound proposition; Logic of mathematics; Logically; Logic/alternate-start; Logics; Logicians; Formal symbolic logic; Logical rules; Logicus; Material logic; Types of logic; Logike; Logico; Subfields of logic; Formal logics; Formal logician; Formal logicians; Science of correct reasoning; Science of correct argument; Science of correct arguments; Science of correct argumentation; Science of good reasoning; Science of good argument; Science of good arguments; Science of good argumentation; Science of valid reasoning; Science of valid argument; Science of valid arguments; Science of valid argumentation; Study of correct reasoning; Study of correct argument; Study of correct arguments; Study of correct argumentation; Study of good reasoning; Study of good argument; Study of good arguments; Study of good argumentation; Study of valid reasoning; Study of valid argument; Study of valid arguments; Study of valid argumentation; Science of correct inference; Science of correct inferences; Science of good inference; Science of good inferences; Science of valid inference; Science of valid inferences; Study of correct inference; Study of correct inferences; Study of good inference; Study of good inferences; Study of valid inference; Study of valid inferences; Science of inference; Science of inferences; Study of inference; Study of inferences; Science of truth; Science of truth values; Science of logical truth; Study of truth; Study of truth values; Study of logical truth
lógica
lógico
Logic         
  • access-date=25 September 2022}}</ref>
  • [[Gottlob Frege]]'s ''[[Begriffschrift]]'' introduced the notion of quantifier in a graphical notation, which here represents the judgement that <math>\forall x. F(x)</math> is true.
  • date=2022}}</ref>
  • Formal logic needs to translate natural language arguments into a formal language, like first-order logic, in order to assess whether they are valid. In this example, the colors indicate how the English words correspond to the symbols.
  • The [[square of opposition]] is often used to visualize the relations between the four basic [[categorical propositions]] in Aristotelian logic. It shows, for example, that the propositions "All S are P" and "Some S are not P" are contradictory, meaning that one of them has to be true while the other is false.
  • Conjunction (AND) is one of the basic operations of boolean logic. It can be electronically implemented in several ways, for example, by using two [[transistor]]s.
  • Young America's dilemma: Shall I be wise and great, or rich and powerful? (poster from 1901) This is an example of a [[false Dilemma]]: an informal fallacy using a disjunctive premise that excludes viable alternatives.
  • access-date=29 September 2022}}</ref>
STUDY OF CORRECT REASONING
DefinitionOfLogic; Classical two-valued logic; Formal logic; Logical; Logician; Compound proposition; Logic of mathematics; Logically; Logic/alternate-start; Logics; Logicians; Formal symbolic logic; Logical rules; Logicus; Material logic; Types of logic; Logike; Logico; Subfields of logic; Formal logics; Formal logician; Formal logicians; Science of correct reasoning; Science of correct argument; Science of correct arguments; Science of correct argumentation; Science of good reasoning; Science of good argument; Science of good arguments; Science of good argumentation; Science of valid reasoning; Science of valid argument; Science of valid arguments; Science of valid argumentation; Study of correct reasoning; Study of correct argument; Study of correct arguments; Study of correct argumentation; Study of good reasoning; Study of good argument; Study of good arguments; Study of good argumentation; Study of valid reasoning; Study of valid argument; Study of valid arguments; Study of valid argumentation; Science of correct inference; Science of correct inferences; Science of good inference; Science of good inferences; Science of valid inference; Science of valid inferences; Study of correct inference; Study of correct inferences; Study of good inference; Study of good inferences; Study of valid inference; Study of valid inferences; Science of inference; Science of inferences; Study of inference; Study of inferences; Science of truth; Science of truth values; Science of logical truth; Study of truth; Study of truth values; Study of logical truth
Lógica
logic         
  • access-date=25 September 2022}}</ref>
  • [[Gottlob Frege]]'s ''[[Begriffschrift]]'' introduced the notion of quantifier in a graphical notation, which here represents the judgement that <math>\forall x. F(x)</math> is true.
  • date=2022}}</ref>
  • Formal logic needs to translate natural language arguments into a formal language, like first-order logic, in order to assess whether they are valid. In this example, the colors indicate how the English words correspond to the symbols.
  • The [[square of opposition]] is often used to visualize the relations between the four basic [[categorical propositions]] in Aristotelian logic. It shows, for example, that the propositions "All S are P" and "Some S are not P" are contradictory, meaning that one of them has to be true while the other is false.
  • Conjunction (AND) is one of the basic operations of boolean logic. It can be electronically implemented in several ways, for example, by using two [[transistor]]s.
  • Young America's dilemma: Shall I be wise and great, or rich and powerful? (poster from 1901) This is an example of a [[false Dilemma]]: an informal fallacy using a disjunctive premise that excludes viable alternatives.
  • access-date=29 September 2022}}</ref>
STUDY OF CORRECT REASONING
DefinitionOfLogic; Classical two-valued logic; Formal logic; Logical; Logician; Compound proposition; Logic of mathematics; Logically; Logic/alternate-start; Logics; Logicians; Formal symbolic logic; Logical rules; Logicus; Material logic; Types of logic; Logike; Logico; Subfields of logic; Formal logics; Formal logician; Formal logicians; Science of correct reasoning; Science of correct argument; Science of correct arguments; Science of correct argumentation; Science of good reasoning; Science of good argument; Science of good arguments; Science of good argumentation; Science of valid reasoning; Science of valid argument; Science of valid arguments; Science of valid argumentation; Study of correct reasoning; Study of correct argument; Study of correct arguments; Study of correct argumentation; Study of good reasoning; Study of good argument; Study of good arguments; Study of good argumentation; Study of valid reasoning; Study of valid argument; Study of valid arguments; Study of valid argumentation; Science of correct inference; Science of correct inferences; Science of good inference; Science of good inferences; Science of valid inference; Science of valid inferences; Study of correct inference; Study of correct inferences; Study of good inference; Study of good inferences; Study of valid inference; Study of valid inferences; Science of inference; Science of inferences; Study of inference; Study of inferences; Science of truth; Science of truth values; Science of logical truth; Study of truth; Study of truth values; Study of logical truth
la lógica [Noun]

Определение

lógico
lógico, -a (del lat. "logicus")
1 adj. Aprobado por la *razón como bien deducido o bien pensado: "Una consecuencia lógica". De la lógica o conforme a sus leyes o normas, o del pensamiento: "Enlace lógico. Relación lógica".
2 Natural o *normal: conforme con las leyes naturales, con la marcha normal de las cosas o en correspondencia con sus antecedentes: "Es lógico que un joven trabaje más que un viejo. No es lógico llevar abrigo en verano e ir a cuerpo en invierno".
3 n. Persona que se dedica al estudio de la lógica.

Википедия

Inductivismo

El inductivismo es un método científico que elabora conclusiones generales a partir de enunciados observacionales particulares y parte de lo particular a lo general. Este ha sido el método científico más común, pero también han surgido otras escuelas epistemológicas que han desarrollado otros como el falsacionismo y los paradigmas de Kuhn.

El propósito de la lógica inductiva es el estudio de las pruebas que permiten medir la probabilidad de los argumentos, así como de las reglas para construir argumentos inductivos fuertes. A diferencia del razonamiento deductivo, en el razonamiento inductivo no existe acuerdo sobre cuándo considerar un argumento como válido. De este modo, se hace uso de la noción de «fuerza inductiva», que hace referencia al grado de probabilidad de que una conclusión sea verdadera cuando sus premisas son verdaderas. Así, un argumento inductivo es fuerte cuando es altamente improbable que su conclusión sea falsa si las premisas son verdaderas. Tradicionalmente se considera que el razonamiento inductivo es una modalidad del razonamiento que consiste en obtener conclusiones generales a partir de premisas que contienen datos particulares o individuales. Por ejemplo, a partir de la observación repetida de objetos o acontecimientos de la misma índole se establece una conclusión general para todos los objetos o eventos de dicha naturaleza.

El inductivismo se caracteriza por tener cuatro etapas básicas:

  1. Observación y registro de todos los hechos
  2. Análisis y clasificación de los hechos
  3. Derivación inductiva de una generalización a partir de los hechos
  4. Contrastación

En una primera etapa se debe observar y registrar todos los hechos y luego analizarlos, para luego clasificarlos ordenadamente. A partir de los datos procesados, se deriva una hipótesis que solucione el problema basado en el análisis lógico de los datos procesados. Esta derivación de hipótesis se hace siguiendo un razonamiento inductivo. En la última etapa se deduce una implicación contrastadora de hipótesis. Esta implicación debería ocurrir en el caso de que la hipótesis sea verdadera. Así, si se confirma la implicación contrastadora de hipótesis, la hipótesis principal queda validada.

La utilización de este método puede llegar a organizar un campo Gestalt. Es por eso que la psicología actual sostiene que el inductivismo es demasiado subjetivo.