аффинор - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

аффинор - перевод на русский

ПОНЯТИЕ В МАТЕМАТИКЕ И ФИЗИКЕ
Валентность тензора; Дуальный базис; Аффинор; Ранг тензора; Девиатор (математика)
  • Тензор механического напряжения может быть представлен как матрица, столбцами которой являются силы, действующие на грани куба
  • Изменение координат вектора <math>v</math> при переходе к другому базису

аффинор         
m.
affinor; единимый аффинор, idemfactor ахромат
тензор         
m.
tensor; тензор деформации, strain tensor, deformation tensor; тензор напряжения, stress tensor; тензор скорости деформации, strain velocity tensor; тензор проводимости, conductivity tensor
contravariant affinor      

математика

контравариантнай аффинор

Определение

ТЕНЗОР
[тэ], а, м. мат.
Величина особого рода, задаваемая числами и законами их преобразования и являющаяся развити-ем и обобщением вектора и матрицы. Тензорный - относящийся к тензору, тензорам.

Википедия

Тензор

Те́нзор (от лат. tensus, «напряжённый») — применяемый в математике и физике объект линейной алгебры, заданный на векторном пространстве V {\displaystyle V} конечной размерности n {\displaystyle n} . В физике в качестве V {\displaystyle V} обычно выступает физическое трёхмерное пространство или четырёхмерное пространство-время, а компонентами тензора являются координаты взаимосвязанных физических величин.

Использование тензоров в физике позволяет глубже понять физические законы и уравнения, упростить их запись за счет сведения многих связанных физических величин в один тензор, а также записывать уравнения в форме, не зависящей от выбранной системы отсчета.

Тензоры различаются по типу, который определяется парой натуральных чисел ( s , r ) {\displaystyle (s,r)} , где s {\displaystyle s}  — контравариантный, а r {\displaystyle r}  — ковариантный ранг (и говорят s {\displaystyle s} раз контравариантный и r {\displaystyle r} раз ковариантный тензор), а сумма s + r {\displaystyle s+r} называется просто рангом тензора.

Тензоры типа ( s , r ) {\displaystyle (s,r)}  — это векторы линейного пространства, полилинейно связанного с пространством V {\displaystyle V} и обозначаемого r s V {\displaystyle \otimes _{r}^{s}V} или T r s ( V ) {\displaystyle T_{r}^{s}(V)} . Размерность r s V {\displaystyle \otimes _{r}^{s}V} равна числу компонент тензора, а сами компоненты представляют собой координаты тензора в r s V {\displaystyle \otimes _{r}^{s}V} в базисе, «привязанном» к базису пространства V {\displaystyle V} . Ранг тензора вместе с размерностью пространства V {\displaystyle V} определяют количество компонент тензора n s + r {\displaystyle n^{s+r}} , а ковариантный и контравариантный ранг — характер их зависимости от базиса в пространстве V {\displaystyle V} .

Именно полилинейная связь между V {\displaystyle V} и r s V {\displaystyle \otimes _{r}^{s}V} позволяет идентифицировать векторы из r s V {\displaystyle \otimes _{r}^{s}V} как тензоры на V {\displaystyle V} , а не просто векторы некоторого пространства, так как при замене базиса в V {\displaystyle V} , также меняется базис в r s V {\displaystyle \otimes _{r}^{s}V} и координаты тензора как вектора этого пространства. Поэтому говорят о координатном представлении тензора в базисе пространства V {\displaystyle V} . Несмотря на изменения компонент тензора при смене базиса, тензоры, как алгебраические и геометрические объекты, от базиса не зависят — одному и тому же объекту могут соответствовать разные наборы координат в разных базисах.

Компоненты тензора при фиксированном базисе V {\displaystyle V} можно структурировать в виде ( s + r ) {\displaystyle (s+r)} -мерной таблицы n × n × × n {\displaystyle n\times n\times \cdots \times n} . При ранге 0 таблица представляет собой одно число, при ранге 1 — упорядоченный набор (вектор-столбец или вектор-строка), при ранге 2 — квадратную матрицу, при ранге 3 — трёхмерный куб и т. д. В общем случае визуальное представление для больших рангов затруднительно.

Таким образом, тензоры типа (1,0) — это векторы пространства V {\displaystyle V} , (0,1) — линейные функционалы (ковекторы) на V {\displaystyle V} , образующие сопряженное пространство V {\displaystyle V^{*}} той же размерности. Тензоры 2 ранга — это тензоры типа (0,2) (билинейные формы), (1,1) (линейные операторы) и (2,0). К тензорам (ранга 0) относятся также скаляры — элементы поля, на котором задано пространство V {\displaystyle V}  (обычно это действительные или комплексные числа). Скаляры не изменяются (инвариантны) при смене базиса.

Компоненты тензора типа ( s , r ) {\displaystyle (s,r)} записываются с помощью s {\displaystyle s} верхних (контравариантных) и r {\displaystyle r} нижних (ковариантных) индексов: T j 1 j 2 j r i 1 i 2 i s {\displaystyle T_{j_{1}j_{2}\dots j_{r}}^{i_{1}i_{2}\dots i_{s}}} . Например, векторы в тензорном обозначении записываются с одним верхним индексом x i {\displaystyle x^{i}} , линейные операторы — с нижним и верхним индексами: a j i {\displaystyle a_{j}^{i}} , билинейные формы (дважды ковариантные тензоры) — с двумя нижними индексами F i j {\displaystyle F_{ij}} . Тензор типа ( 1 , 3 ) {\displaystyle (1,3)} (например, тензор кривизны Римана) будет записан как R j k l i {\displaystyle R_{jkl}^{i}} .

В приложениях часто применяются тензорные поля, которые сопоставляют различным точкам пространства разные тензоры (например, тензор напряжений внутри объекта). Тем не менее, часто их упрощенно тоже называют тензорами.

Тензоры были популяризованы в 1900 году Туллио Леви-Чивита и Грегорио Риччи-Курбастро, которые продолжили более ранние работы Бернхарда Римана и Элвина Бруно Кристоффеля. Слово «тензор» придумал немецкий физик В. Фогт в 1898 году.


Как переводится аффинор на Английский язык