дырочный - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

дырочный - перевод на Английский

Дырочный полупроводник; Дырочная проводимость
  • Схема кристаллической решетки полупроводника IV группы (кремния, легированного алюминием) с проводимостью р-типа.

дырочный      
adj.
hole; дырочная ловушка, hole trap
hole conduction         
  • A children's puzzle which illustrates the mobility of holes in an atomic lattice. The tiles are analogous to electrons, while the missing tile ''(lower right corner)'' is analogous to a hole.  Just as the position of the missing tile can be moved to different locations by moving the tiles, a hole in a crystal lattice can move to different positions in the lattice by the motion of the surrounding electrons.
  • effective mass]]. The "filled band" is the semiconductor's [[valence band]]; it curves downward indicating negative effective mass.
CONCEPTUAL AND MATHEMATICAL OPPOSITE OF AN ELECTRON
Electron holes; Hole (quasiparticle); Electron-hole; Hole conduction; Hole theory of electrons; Hole (semiconductor); Hole (electricity)

общая лексика

дырочная электропроводность

дырочная проводимость

p-n         
  • A silicon p–n junction in reverse bias.
  • PN junction operation in forward-bias mode, showing reducing depletion width.
  • '''Figure B.''' A p–n junction in thermal equilibrium with zero-bias voltage applied. Under the junction, plots for the charge density, the electric field, and the voltage are reported. (The log concentration curves should actually be smoother, like the voltage.)
  • '''Figure A.''' A p–n junction in thermal equilibrium with zero-bias voltage applied. Electron and hole concentration are reported with blue and red lines, respectively. Gray regions are charge-neutral. Light-red zone is positively charged. Light-blue zone is negatively charged. The electric field is shown on the bottom, the electrostatic force on electrons and holes and the direction in which the diffusion tends to move electrons and holes. (The log concentration curves should actually be smoother with slope varying with field strength.)
  • [[Silicon]] atoms (Si) enlarged about 45,000,000x.
SEMICONDUCTOR–SEMICONDUCTOR JUNCTION, FORMED AT THE BOUNDARY BETWEEN A P-TYPE AND N-TYPE SEMICONDUCTOR
P-N junction; Reverse bias; Reverse-biased; Idiot Diode; P–N junction; PN junction; Pn junction; Pn-junction; Single-junction cell; P-n; Semiconductor junction; Pn Junction; Formation of a p-n Junction; P-n junction

общая лексика

электронно-дырочный

Смотрите также

cumulative throughflow; fractional throughflow

Определение

Электронно-дырочный переход
(p - n-переход)

область полупроводника, в которой имеет место пространственное изменение типа проводимости (от электронной n к дырочной p). Поскольку в р-области Э.-д. п. концентрация дырок гораздо выше, чем в n-области, дырки из n -области стремятся диффундировать в электронную область. Электроны диффундируют в р-область. Однако после ухода дырок в n-области остаются отрицательно заряженные акцепторные атомы, а после ухода электронов в n-области - положительно заряженные донорные атомы. Т. к. акцепторные и донорные атомы неподвижны, то в области Э.-л. п. образуется двойной слой пространственного заряда - отрицательные заряды в р-области и положительные заряды в n -области (рис. 1). Возникающее при этом контактное электрическое поле по величине и направлению таково, что оно противодействует диффузии свободных носителей тока через Э.-д. п.; в условиях теплового равновесия при отсутствии внешнего электрического напряжения полный ток через Э.-д. п. равен нулю. Т. о., в Э.-д. п. существует динамическое равновесие, при котором небольшой ток, создаваемый неосновными носителями (электронами в р-области и дырками в n-области), течёт к Э.-д. п. и проходит через него под действием контактного поля, а равный по величине ток, создаваемый диффузией основных носителей (электронами в n-области и дырками в р-области), протекает через Э.-д. п. в обратном направлении. При этом основным носителям приходится преодолевать контактное поле (Потенциальный барьер). Разность потенциалов, возникающая между p- и n-областями из-за наличия контактного поля (Контактная разность потенциалов или высота потенциального барьера), обычно составляет десятые доли вольта.

Внешнее электрическое поле изменяет высоту потенциального барьера и нарушает равновесие потоков носителей тока через него. Если положит. потенциал приложен к р-области, то внешнее поле направлено против контактного, т. е. потенциальный барьер понижается (прямое смещение). В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть потенциальный барьер. Концентрация неосновных носителей по обе стороны Э.-д. п. увеличивается (инжекция неосновных носителей), одновременно в р- и n-области через контакты входят равные количества основных носителей, вызывающих нейтрализацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через Э.-д. п. При повышении приложенного напряжения этот ток экспоненциально возрастает. Наоборот, приложение положит, потенциала к и-области (обратное смещение) приводит к повышению потенциального барьера. При этом диффузия основных носителей через Э.-д. п. становится пренебрежимо малой.

В то же время потоки неосновных носителей не изменяются, поскольку для них барьера не существует. Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через Э.-д. п. течёт ток Is (ток насыщения), который обычно мал и почти не зависит от приложенного напряжения. Т. о., зависимость тока 1 через Э.-д. п. от приложенного напряжения U (вольтамперная характеристика) обладает резко выраженной нелинейностью (рис. 2). При изменении знака напряжения ток через Э.-д. п. может меняться в 105-106 раз. Благодаря этому Э.-д. п. является вентильным устройством, пригодным для выпрямления переменных токов (см. Полупроводниковый диод). Зависимость сопротивления Э.-д. п. от U позволяет использовать Э.-д. п. в качестве регулируемого сопротивления (Варистора).

При подаче на Э.-д. п. достаточно высокого обратного смещения U = Uпр возникает электрический пробой, при котором протекает большой обратный ток (рис. 2). Различают лавинный пробой, когда на длине свободного пробега в области объёмного заряда носитель приобретает энергию, достаточную для ионизации кристаллической решётки, туннельный (зинеровский) пробой, возникающий при туннелировании носителей сквозь барьер (см. Туннельный эффект), и тепловой пробой, связанный с недостаточностью теплоотвода от Э.-д. п., работающего в режиме больших токов.

От приложенного напряжения зависит не только проводимость, но и ёмкость Э.-д. п. Действительно, повышение потенциального барьера при обратном смещении означает увеличение разности потенциалов между п- и р-областями полупроводника и, отсюда, увеличение их объёмных зарядов. Поскольку объёмные заряды являются неподвижными и связанными с кристаллической решёткой ионами доноров и акцепторов, увеличение объёмного заряда может быть обусловлено только расширением его области и, следовательно, уменьшением ёмкости Э.-д. п. При прямом смещении к ёмкости слоя объёмного заряда (называется также зарядной ёмкостью) добавляется т. н. диффузионная ёмкость, обусловленная тем, что увеличение напряжения на Э.-д. п. приводит к увеличению концентрации неосновных носителей, т. е. к изменению заряда. Зависимость ёмкости от приложенного напряжения позволяет использовать Э.-д. п. в качестве варактора - прибора, ёмкостью которого можно управлять, меняя напряжение смещения (см. Параметрический полупроводниковый диод).

Помимо использования нелинейности вольтамперной характеристики и зависимости ёмкости от напряжения, Э.-д. п. находит многообразные применения, основанные на зависимости контактной разности потенциалов и тока насыщения от концентрации неосновных носителей. Их концентрация существенно изменяется при различных внешних воздействиях - тепловых, механических, оптических и др. На этом основаны различного рода датчики: температуры, давления, ионизирующих излучений и т. д. Э.-д. п. используется также для преобразования световой энергии в электрическую (см. Солнечная батарея).

Э.-д. п. являются основой разного рода полупроводниковых диодов, а также входят в качестве составных элементов в более сложные Полупроводниковые приборы - Транзисторы, Тиристоры и т. д. Инжекция и последующая рекомбинация неосновных носителей в Э.-д. п. используются в светоизлучающих диодах (См. Светоизлучающий диод) и инжекционных лазерах (См. Инжекционный лазер).

Э.-д. п. может быть создан различными путями: 1) в объёме одного и того же полупроводникового материала, легированного в одной части донорной примесью (р-область), а в другой - акцепторной (n-область); 2) на границе двух различных полупроводников с разными типами проводимости (см. Полупроводниковый гетеропереход); 3) вблизи контакта полупроводника с металлом (См. Металлы), если ширина запрещенной зоны полупроводника меньше разности работ выхода (См. Работа выхода) полупроводника и металла; 4) приложением к поверхности полупроводника с электронной (дырочной) проводимостью достаточно большого отрицательного (положительного) потенциала, под действием которого у поверхности образуется область с дырочной (электронной) проводимостью (инверсный слой).

Если Э.-д. п. получают вплавлением примесей в монокристаллический полупроводник (например, акцепторной примеси в кристалл с проводимостью n-типа), то переход от n- к р-области происходит скачком (резкий Э.-д. п.). Если используется диффузия примесей, то образуется плавный Э.-д. п. Плавные Э.-д. п. можно получать также выращиванием монокристалла из расплава, в котором постепенно изменяют содержание и характер примесей. Получил распространение метод ионного внедрения (См. Ионное внедрение) примесных атомов, позволяющий создавать Э.-д. п. заданного профиля.

Лит.: Стильбанс Л. С., Физика полупроводников, М., 1967; Пикус Г. Е., Основы теории полупроводниковых приборов, М., 1965; Федотов Я. А., Основы физики полупроводниковых приборов, 2 изд., М., 1970; СВЧ-полупроводниковые приборы и их применение, пер. с англ., М., 1972; Бонч-Бруевич В. Л., Калашников С. Г., Физика полупроводников, М., 1977.

Э. М. Эпштейн.

Рис. 1. Схема p-n-перехода: чёрные кружки - электроны; светлые кружки - дырки.

Рис. 2. Вольтамперная характеристика р - n-перехода: U - приложенное напряжение; I - ток через переход; Is - ток насыщения; Unp - напряжение пробоя.

Википедия

Полупроводник p-типа

Полупроводни́к p-ти́па — полупроводник, в котором основными носителями заряда являются дырки.

Полупроводники p-типа получают методом легирования собственных полупроводников акцепторами.

Для полупроводников четвёртой группы периодической таблицы, например, таких как кремний и германий, акцепторами могут быть примеси химических элементов группы III периодической таблицы элементов Д. И. Менделеева — бор, алюминий, индий, галлий, а донорными — группы V — фосфор, мышьяк.

Для полупроводниковых соединений типа AIIIBV, например, арсенида галлия донорными примесями являются элементы группы VI — селен, теллур, а акцепторными — группы II — цинк, кадмий, ртуть.

Концентрация дырок в валентной зоне определяется температурой, концентрацией акцепторов, энергией акцепторного уровня над энергией верха валентной зоны, эффективной плотностью уровней в валентной зоне.

Как переводится дырочный на Английский язык