Gudermannian - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Gudermannian - перевод на русский

FUNCTION THAT RELATES THE CIRCULAR FUNCTIONS AND HYPERBOLIC FUNCTIONS WITHOUT USING COMPLEX NUMBERS
Gudermannian; Gudermanian function; Gudermann function; Gd(x); Meridional parts; Transcendent angle; Lambertian function; Hyperbolic amplitude; Meridional part
  • Distance in the [[Poincaré half-plane model]] of the [[hyperbolic plane]] from the apex of a semicircle to another point on it is the inverse Gudermannian function of the central angle.
  • ''ζ'' ↦ 2 arctan ''ζ''}} from the disk to the other infinite strip.
  • (0, ''s'').}}
  • Graph]] of the Gudermannian function.
  • Identities related to the Gudermannian function represented graphically.
  • Graph of the inverse Gudermannian function.

Gudermannian         

общая лексика

гудерманиан

meridional parts         
меридианальные части
hyperbolic amplitude         

математика

гиперболическая амплитуда

гудерманиан

Википедия

Gudermannian function

In mathematics, the Gudermannian function relates a hyperbolic angle measure ψ {\textstyle \psi } to a circular angle measure ϕ {\textstyle \phi } called the gudermannian of ψ {\textstyle \psi } and denoted gd ψ {\textstyle \operatorname {gd} \psi } . The Gudermannian function reveals a close relationship between the circular functions and hyperbolic functions. It was introduced in the 1760s by Johann Heinrich Lambert, and later named for Christoph Gudermann who also described the relationship between circular and hyperbolic functions in 1830. The gudermannian is sometimes called the hyperbolic amplitude as a limiting case of the Jacobi elliptic amplitude am ( ψ , m ) {\textstyle \operatorname {am} (\psi ,m)} when parameter m = 1. {\textstyle m=1.}

The real Gudermannian function is typically defined for < ψ < {\textstyle -\infty <\psi <\infty } to be the integral of the hyperbolic secant

The real inverse Gudermannian function can be defined for 1 2 π < ϕ < 1 2 π {\textstyle -{\tfrac {1}{2}}\pi <\phi <{\tfrac {1}{2}}\pi } as the integral of the secant

The hyperbolic angle measure ψ = gd 1 ϕ {\displaystyle \psi =\operatorname {gd} ^{-1}\phi } is called the anti-gudermannian of ϕ {\displaystyle \phi } or sometimes the lambertian of ϕ {\displaystyle \phi } , denoted ψ = lam ϕ . {\displaystyle \psi =\operatorname {lam} \phi .} In the context of geodesy and navigation for latitude ϕ {\textstyle \phi } , k gd 1 ϕ {\displaystyle k\operatorname {gd} ^{-1}\phi } (scaled by arbitrary constant k {\textstyle k} ) was historically called the meridional part of ϕ {\displaystyle \phi } (French: latitude croissante). It is the vertical coordinate of the Mercator projection.

The two angle measures ϕ {\textstyle \phi } and ψ {\textstyle \psi } are related by a common stereographic projection

and this identity can serve as an alternative definition for gd {\textstyle \operatorname {gd} } and gd 1 {\textstyle \operatorname {gd} ^{-1}} valid throughout the complex plane:

Как переводится Gudermannian на Русский язык