bit map graphics - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

bit map graphics - перевод на русский

THE TRANSFORMATION OF THE UNIT INTERVAL THAT MAPS X TO 2X MOD 1
Dyadic map; 2x mod 1 map; Bernoulli map; Doubling map; Bit shift map; Bit-shift map; Sawtooth map

bit map graphics      
графический материал с побитовым отображением
bit-mapped graphics         
  • reflection]] (almost free), either before or afterwards, amounts to a 90° image rotation in one direction or the other.
  • A simple raster graphic
  • Using a raster to summarize a point pattern.
DOT MATRIX DATA STRUCTURE, REPRESENTING A GENERALLY RECTANGULAR GRID OF PIXELS, OR POINTS OF COLOR, VIEWABLE VIA A MONITOR, PAPER, OR OTHER DISPLAY MEDIUM
Bit-mapped graphics; Bitmap graphics; Raster image; Raster format; Raster Graphics; Pixelmap; Bitmapped; Raster images; Bit-Mapped Graphics; Rastor; Bitmapped graphics; Bitmapped image; Raster graphic; Rasterized image; Video raster; Raster data; Bitmapped display; Raster drawing; Contones; Gridded data

Смотрите также

bitmapped graphics

dyadic transformation         

математика

диадическое преобразование

Определение

bit string
<programming, data> An ordered sequence of bits. This is very similar to a bit pattern except that the term "string" suggests an arbitrary length sequence as opposed to a pre-determined length "pattern".

Википедия

Dyadic transformation

The dyadic transformation (also known as the dyadic map, bit shift map, 2x mod 1 map, Bernoulli map, doubling map or sawtooth map) is the mapping (i.e., recurrence relation)

T : [ 0 , 1 ) [ 0 , 1 ) {\displaystyle T:[0,1)\to [0,1)^{\infty }}
x ( x 0 , x 1 , x 2 , ) {\displaystyle x\mapsto (x_{0},x_{1},x_{2},\ldots )}

(where [ 0 , 1 ) {\displaystyle [0,1)^{\infty }} is the set of sequences from [ 0 , 1 ) {\displaystyle [0,1)} ) produced by the rule

x 0 = x {\displaystyle x_{0}=x}
for all  n 0 ,   x n + 1 = ( 2 x n ) mod 1 {\displaystyle {\text{for all }}n\geq 0,\ x_{n+1}=(2x_{n}){\bmod {1}}} .

Equivalently, the dyadic transformation can also be defined as the iterated function map of the piecewise linear function

T ( x ) = { 2 x 0 x < 1 2 2 x 1 1 2 x < 1. {\displaystyle T(x)={\begin{cases}2x&0\leq x<{\frac {1}{2}}\\2x-1&{\frac {1}{2}}\leq x<1.\end{cases}}}

The name bit shift map arises because, if the value of an iterate is written in binary notation, the next iterate is obtained by shifting the binary point one bit to the right, and if the bit to the left of the new binary point is a "one", replacing it with a zero.

The dyadic transformation provides an example of how a simple 1-dimensional map can give rise to chaos. This map readily generalizes to several others. An important one is the beta transformation, defined as T β ( x ) = β x mod 1 {\displaystyle T_{\beta }(x)=\beta x{\bmod {1}}} . This map has been extensively studied by many authors. It was introduced by Alfréd Rényi in 1957, and an invariant measure for it was given by Alexander Gelfond in 1959 and again independently by Bill Parry in 1960.

Как переводится bit map graphics на Русский язык