extended mean value theorem - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

extended mean value theorem - перевод на русский

ON THE EXISTENCE OF A TANGENT TO AN ARC PARALLEL TO THE LINE THROUGH ITS ENDPOINTS
Mean Value Theorem; Mean-value theorem; Cauchy's mean value theorem; Mean-Value Theorem; Cauchy mean theorem; Cauchy's mean theorem; Extended mean value theorem; Mean value theorems for integration; Cauchy's Mean Value Theorem; Extended mean-value theorem; First mean value theorem for integration; Mean value thm; Second mean value theorem; Cauchy mean value theorem; Cauchy's mean-value theorem; Cauchys mean-value theorem; Cauchys mean value theorem; Law of the Mean; Lagrange's mean value theorem; Mean value theorem for integrals; Mean value theorems for definite integrals; Mean value theorem for definite integrals; Mean value theorems for integrals; Mean value theorem for integration; First mean value theorem for definite integrals; First mean value theorem for integrals; First mean value theorem; Second mean value theorem for definite integrals; Second mean value theorem for integrals; Second mean value theorem for integration; Mean value inequality
  • thumb
  • The mean value theorem displayed on a bridge in [[Beijing]]
  • The function <math>f</math> attains the slope of the secant between <math>a</math> and <math>b</math> as the derivative at the point <math>\xi\in(a,b)</math>.
  • It is also possible that there are multiple tangents parallel to the secant.
  • website=www.mathwords.com}}</ref>

extended mean value theorem         
обобщённая теорема о среднем
mean-value theorem         

общая лексика

теорема о среднем

mean value theorem         
теорема о среднем

Определение

ГРИНВИЧСКОЕ СРЕДНЕЕ ВРЕМЯ
см. Всемирное время.

Википедия

Mean value theorem

In mathematics, the mean value theorem (or Lagrange theorem) states, roughly, that for a given planar arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant through its endpoints. It is one of the most important results in real analysis. This theorem is used to prove statements about a function on an interval starting from local hypotheses about derivatives at points of the interval.

More precisely, the theorem states that if f {\displaystyle f} is a continuous function on the closed interval [ a , b ] {\displaystyle [a,b]} and differentiable on the open interval ( a , b ) {\displaystyle (a,b)} , then there exists a point c {\displaystyle c} in ( a , b ) {\displaystyle (a,b)} such that the tangent at c {\displaystyle c} is parallel to the secant line through the endpoints ( a , f ( a ) ) {\displaystyle {\big (}a,f(a){\big )}} and ( b , f ( b ) ) {\displaystyle {\big (}b,f(b){\big )}} , that is,

f ( c ) = f ( b ) f ( a ) b a . {\displaystyle f'(c)={\frac {f(b)-f(a)}{b-a}}.}
Как переводится extended mean value theorem на Русский язык