kappa curve - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

kappa curve - перевод на русский

Kappa Curve

kappa curve         

математика

кривая каппа

Phi Beta Kappa         
  • The Phi Beta Kappa Society National Headquarters located in the historic [[Dupont Circle]] neighborhood of [[Washington, D.C.]]
  • Students hold the Key of Phi Beta Kappa at [[Duke University]].
HONOR SOCIETY FOR THE LIBERAL ARTS AND SCIENCES IN THE UNITED STATES
Phi beta kappa; ΦΒΚ; ΦBK; PhBK; Phi Beta Kappa society; Phi betta kappa; The Phi Beta Kappa Society; Phi Beta Kappa Book Awards; Phi Beta Kappa Society; Christian Gauss Award

[faibi:tə'kæpə]

американизм

«Фи Бета Каппа» (привилегированное общество студентов и выпускников колледжей)

член общества «Фи Бета Каппа»

epidemic curve         
  • Common source outbreak of Hepatitis A in Nov-Dec 1978
A STATISTICAL CHART USED IN EPIDEMIOLOGY TO VISUALISE THE ONSET OF A DISEASE OUTBREAK.
Epi curve; Epidemiological curve

статистика

эпидемическая кривая

Определение

Bezier curve
<graphics> A type of curve defined by mathematical formulae, used in computer graphics. A curve with coordinates P(u), where u varies from 0 at one end of the curve to 1 at the other, is defined by a set of n+1 "control points" (X(i), Y(i), Z(i)) for i = 0 to n. P(u) = Sum i=0..n [(X(i), Y(i), Z(i)) * B(i, n, u)] B(i, n, u) = C(n, i) * u^i * (1-u)^(n-i) C(n, i) = n!/i!/(n-i)! A Bezier curve (or surface) is defined by its control points, which makes it invariant under any affine mapping (translation, rotation, parallel projection), and thus even under a change in the axis system. You need only to transform the control points and then compute the new curve. The control polygon defined by the points is itself affine invariant. Bezier curves also have the variation-diminishing property. This makes them easier to split compared to other types of curve such as Hermite or B-spline. Other important properties are multiple values, global and local control, versatility, and order of continuity. [What do these properties mean?] (1996-06-12)

Википедия

Kappa curve

In geometry, the kappa curve or Gutschoven's curve is a two-dimensional algebraic curve resembling the Greek letter ϰ (kappa). The kappa curve was first studied by Gérard van Gutschoven around 1662. In the history of mathematics, it is remembered as one of the first examples of Isaac Barrow's application of rudimentary calculus methods to determine the tangent of a curve. Isaac Newton and Johann Bernoulli continued the studies of this curve subsequently.

Using the Cartesian coordinate system it can be expressed as

x 2 ( x 2 + y 2 ) = a 2 y 2 {\displaystyle x^{2}\left(x^{2}+y^{2}\right)=a^{2}y^{2}}

or, using parametric equations,

x = a sin t , y = a sin t tan t . {\displaystyle {\begin{aligned}x&=a\sin t,\\y&=a\sin t\tan t.\end{aligned}}}

In polar coordinates its equation is even simpler:

r = a tan θ . {\displaystyle r=a\tan \theta .}

It has two vertical asymptotes at x = ±a, shown as dashed blue lines in the figure at right.

The kappa curve's curvature:

κ ( θ ) = 8 ( 3 sin 2 θ ) sin 4 θ a ( sin 2 ( 2 θ ) + 4 ) 3 2 . {\displaystyle \kappa (\theta )={\frac {8\left(3-\sin ^{2}\theta \right)\sin ^{4}\theta }{a\left(\sin ^{2}(2\theta )+4\right)^{\frac {3}{2}}}}.}

Tangential angle:

ϕ ( θ ) = arctan ( 1 2 sin ( 2 θ ) ) . {\displaystyle \phi (\theta )=-\arctan \left({\tfrac {1}{2}}\sin(2\theta )\right).}
Как переводится kappa curve на Русский язык