knight problem - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

knight problem - перевод на русский

CONSTRUCT CIRCLES THAT ARE TANGENT TO THREE GIVEN CIRCLES IN A PLANE
Apollonius' problem; Problem of apollonius; Apollonius problem; Appolonius' problem; Apollonius's problem; Four coins problem
  • Figure 13: A symmetrical Apollonian gasket, also called the Leibniz packing, after its inventor [[Gottfried Leibniz]].
  • Figure 2: Four complementary pairs of solutions to Apollonius's problem; the given circles are black.
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • ''r''<sub>''outer''</sub> + ''r''<sub>''inner''</sub>}} of the inner and outer radii, while twice its center distance ''d''<sub>''s''</sub> equals their difference.
  • ''r''<sub>''outer''</sub> − ''r''<sub>''inner''</sub>}} of the inner and outer radii, while twice its center distance ''d''<sub>''s''</sub> equals their sum.
  • The set of points with a constant ratio of distances ''d''<sub>1</sub>/''d''<sub>2</sub> to two fixed points is a circle.
  • ''r''<sub>2</sub> + ''r''<sub>''s''</sub>}}, respectively, so their difference is independent of ''r''<sub>''s''</sub>.
  • Figure 11: An Apollonius problem with no solutions. A solution circle (pink) must cross the dashed given circle (black) to touch both of the other given circles (also black).
  • radical center]] (orange).
  • Figure 9: The two tangent lines of the two tangent points of a given circle intersect on the [[radical axis]] ''R'' (red line) of the two solution circles (pink). The three points of intersection on ''R'' are the poles of the lines connecting the blue tangent points in each given circle (black).
  • Figure 6: A conjugate pair of solutions to Apollonius's problem (pink circles), with given circles in black.
  • Figure 1: A solution (in purple) to Apollonius's problem. The given circles are shown in black.
  • Figure 4: Tangency between circles is preserved if their radii are changed by equal amounts. A pink solution circle must shrink or swell with an internally tangent circle (black circle on the right), while externally tangent circles (two black circles on left) do the opposite.
  • Figure 12: The two solutions (red) to Apollonius' problem with mutually tangent given circles (black), labeled by their curvatures.
  • Figure 5: Inversion in a circle. The point ''P''<nowiki>'</nowiki> is the inverse of point ''P'' with respect to the circle.

knight problem      

математика

задача о шахматном коне

knight errant         
  • Title page of an ''[[Amadís de Gaula]]'' romance of 1533
  • "Yvain rescues the lion", from Garrett MS 125, an illustrated manuscript of [[Chrétien de Troyes]]' ''[[Yvain, le Chevalier au Lion]]'', dated to ca. 1295.
CHIVALRIC LITERATURE STOCK CHARACTER
Knight Errant; Knight Errants; Knights Errant; Knight errant; Knights errant; Knight Errantry; Hedge knight; Errant; Knight errantry; Knight-arrant; Knight arrant; Knight (stock character); Knight-errantry; Knight in shining armor; Knight in shining armour; Wandering Knight; Knights-errant
knight errant 1) странствующий рыцарь 2) донкихот, мечтатель
knight-errant         
  • Title page of an ''[[Amadís de Gaula]]'' romance of 1533
  • "Yvain rescues the lion", from Garrett MS 125, an illustrated manuscript of [[Chrétien de Troyes]]' ''[[Yvain, le Chevalier au Lion]]'', dated to ca. 1295.
CHIVALRIC LITERATURE STOCK CHARACTER
Knight Errant; Knight Errants; Knights Errant; Knight errant; Knights errant; Knight Errantry; Hedge knight; Errant; Knight errantry; Knight-arrant; Knight arrant; Knight (stock character); Knight-errantry; Knight in shining armor; Knight in shining armour; Wandering Knight; Knights-errant

[nait|'erənt]

существительное

общая лексика

странствующий рыцарь

донкихот

мечтатель

защитник обречённых на неудачу дел

Определение

Найт
(Knight)

Фрэнк Хайнеман (р. 7.11.1885, округ Маклин, Иллинойс), американский экономист. Образование получил в университетах штата Теннесси и Корнеллском. С 1919 преподавал в университете штата Айова, с 1928 до ухода в отставку - в Чикагском университете. Экономическая теория рассматривается Н. как наука, которая, используя анализ экономического поведения производителей и потребителей, должна дать обобщённое представление о принципах функционирования экономической системы. По мнению Н., обмен является определяющим по отношению к производству. Откровенный апологет капитализма, Н. считает, что предприниматель играет важную динамическую роль в производстве, требования же рабочих о повышении зарплаты объявляет неоправданным вмешательством в безупречно действующий рыночный механизм.

Соч.: The ethics of competition, L., [1935]; The economic organization, N. Y., 1951; On the history and method of economics, [Chi., 1956]; Risk, uncertainty and profit, N. Y., 1957; Intelligence and democratic action, Camb. (Mass.), 1960.

Википедия

Problem of Apollonius

In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane (Figure 1). Apollonius of Perga (c. 262 BC – c. 190 BC) posed and solved this famous problem in his work Ἐπαφαί (Epaphaí, "Tangencies"); this work has been lost, but a 4th-century AD report of his results by Pappus of Alexandria has survived. Three given circles generically have eight different circles that are tangent to them (Figure 2), a pair of solutions for each way to divide the three given circles in two subsets (there are 4 ways to divide a set of cardinality 3 in 2 parts).

In the 16th century, Adriaan van Roomen solved the problem using intersecting hyperbolas, but this solution does not use only straightedge and compass constructions. François Viète found such a solution by exploiting limiting cases: any of the three given circles can be shrunk to zero radius (a point) or expanded to infinite radius (a line). Viète's approach, which uses simpler limiting cases to solve more complicated ones, is considered a plausible reconstruction of Apollonius' method. The method of van Roomen was simplified by Isaac Newton, who showed that Apollonius' problem is equivalent to finding a position from the differences of its distances to three known points. This has applications in navigation and positioning systems such as LORAN.

Later mathematicians introduced algebraic methods, which transform a geometric problem into algebraic equations. These methods were simplified by exploiting symmetries inherent in the problem of Apollonius: for instance solution circles generically occur in pairs, with one solution enclosing the given circles that the other excludes (Figure 2). Joseph Diaz Gergonne used this symmetry to provide an elegant straightedge and compass solution, while other mathematicians used geometrical transformations such as reflection in a circle to simplify the configuration of the given circles. These developments provide a geometrical setting for algebraic methods (using Lie sphere geometry) and a classification of solutions according to 33 essentially different configurations of the given circles.

Apollonius' problem has stimulated much further work. Generalizations to three dimensions—constructing a sphere tangent to four given spheres—and beyond have been studied. The configuration of three mutually tangent circles has received particular attention. René Descartes gave a formula relating the radii of the solution circles and the given circles, now known as Descartes' theorem. Solving Apollonius' problem iteratively in this case leads to the Apollonian gasket, which is one of the earliest fractals to be described in print, and is important in number theory via Ford circles and the Hardy–Littlewood circle method.

Как переводится knight problem на Русский язык