purely finitely additive - перевод на русский
DICLIB.COM
Языковые инструменты на ИИ
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

purely finitely additive - перевод на русский

EXTENDED-REAL-VALUED FUNCTION DEFINED ON A FIELD OF SETS THAT IS FINITELY ADDITIVE
Finitely additive measure

purely finitely additive      
вполне конечно аддитивный
finitely additive measure         
конечно аддитивная мера
additive mixing         
  • Additive color mixing with CD covers
  • [[James Clerk Maxwell]], with his color top that he used for investigation of color vision and additive color
  • The first permanent color photograph, taken by Thomas Sutton, under the direction of James Clerk Maxwell in 1861.
THE SITUATION WHERE COLOR IS CREATED BY MIXING THE VISIBLE LIGHT EMITTED FROM DIFFERENTLY COLORED LIGHT SOURCES
Additive mixing; Additive color theory; Additive colour; Additive color system; Additive colour system; Additive Color System; Additive Colour System; Primary colors of light; Additive colors; Primary colours of light; Additive colours

общая лексика

смешение цветов путем сложения

Определение

additive
(additives)
An additive is a substance which is added in small amounts to foods or other things in order to improve them or to make them last longer.
Strict safety tests are carried out on food additives.
N-COUNT

Википедия

Content (measure theory)

In mathematics, a content is a set function that is like a measure, but a content must only be finitely additive, whereas a measure must be countably additive. A content is a real function μ {\displaystyle \mu } defined on a collection of subsets A {\displaystyle {\mathcal {A}}} such that

  1. μ ( A )   [ 0 , ]  whenever  A A . {\displaystyle \mu (A)\in \ [0,\infty ]{\text{ whenever }}A\in {\mathcal {A}}.}
  2. μ ( ) = 0. {\displaystyle \mu (\varnothing )=0.}
  3. μ ( A 1 A 2 ) = μ ( A 1 ) + μ ( A 2 )  whenever  A 1 , A 2 , A 1 A 2   A  and  A 1 A 2 = . {\displaystyle \mu (A_{1}\cup A_{2})=\mu (A_{1})+\mu (A_{2}){\text{ whenever }}A_{1},A_{2},A_{1}\cup A_{2}\ \in {\mathcal {A}}{\text{ and }}A_{1}\cap A_{2}=\varnothing .}

In many important applications the A {\displaystyle {\mathcal {A}}} is chosen to be a Ring of sets or to be at least a Semiring of sets in which case some additional properties can be deduced which are described below. For this reason some authors prefer to define contents only for the case of semirings or even rings.

If a content is additionally σ-additive it is called a pre-measure and if furthermore A {\displaystyle {\mathcal {A}}} is a σ-algebra, the content is called a measure. Therefore every (real-valued) measure is a content, but not vice versa. Contents give a good notion of integrating bounded functions on a space but can behave badly when integrating unbounded functions, while measures give a good notion of integrating unbounded functions.

Как переводится purely finitely additive на Русский язык