На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:
математика
непрерывное преобразование
математика
дискретное преобразование
математика
частичное преобразование
математика
геометрическое преобразование
математика
алгоритмический метод
['ælgərið(ə)m]
общая лексика
алгоритм
математическая функция или конечный набор описаний конкретной последовательности действий (правил), необходимых для того, чтобы компьютер или интеллектуальное устройство выполнили за конечное время некоторую задачу, сжатие изображения, выбор оптимального маршрута пересылки пакета или шифрование данных. Алгоритм может быть описан блок-схемой. Термин происходит от имени древнеперсидского математика Мухаммеда ибн Муса аль Харезми, написавшего трактат, посвященный алгоритмическому методу
метод, правило
синоним
существительное
специальный термин
алгоритм
In algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalized version of the familiar arithmetic technique called long division. It can be done easily by hand, because it separates an otherwise complex division problem into smaller ones. Sometimes using a shorthand version called synthetic division is faster, with less writing and fewer calculations. Another abbreviated method is polynomial short division (Blomqvist's method).
Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that
and either R = 0 or the degree of R is lower than the degree of B. These conditions uniquely define Q and R, which means that Q and R do not depend on the method used to compute them.
The result R = 0 occurs if and only if the polynomial A has B as a factor. Thus long division is a means for testing whether one polynomial has another as a factor, and, if it does, for factoring it out. For example, if a root r of A is known, it can be factored out by dividing A by (x – r).