shortest-route model - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

shortest-route model - перевод на русский

Shortest common supersequence; Shortest common superstring problem; Shortest common superstring
Найдено результатов: 1544
shortest-route model      

математика

модель выбора кратчайшего пути

shortest-route model      
модель выбора кратчайшего пути
shortest path algorithm         
PROBLEM OF FINDING A PATH BETWEEN TWO VERTICES (OR NODES) IN A GRAPH SUCH THAT THE SUM OF THE WEIGHTS OF ITS CONSTITUENT EDGES IS MINIMIZED
Shortest path; All pairs shortest path problem; All-pairs shortest path problem; All-pairs shortest path; All pairs shortest path; Shortest path algorithms; Shortest Path Algorithms; Shortest path algorithm; Single-destination shortest-path problem; Single-pair shortest-path problem; Single-source shortest-path problem; The Shortest Paths; Negative cycle; DAG shortest paths; Single destination shortest path problem; Single-destination shortest path problem; Singledestination shortest path problem; Single destination shortest-path problem; Singledestination shortest-path problem; Single destination shortestpath problem; Single-destination shortestpath problem; Singledestination shortestpath problem; Shortest-path problem; Shortestpath problem; Shortest-path; Shortestpath; Shortest path problems; Shortest-path problems; Shortestpath problems; Shortest paths; Shortest-paths; Shortestpaths; Single-source shortest path problem; Single source shortest path problem; Singlesource shortest path problem; Single source shortest-path problem; Singlesource shortest-path problem; Single source shortestpath problem; Single-source shortestpath problem; Singlesource shortestpath problem; Apsp; Shortest Path Problem; Shortest path routing; Shortest-path routing; Single-source shortest-paths algorithms for directed graphs with nonnegative weights; APSP; Shortest-path algorithms; Shortest-distance problems; Applications of shortest path algorithms; Algebraic path problem; Graph geodesic
алгоритм кратчайшего пути
shortest path algorithm         
PROBLEM OF FINDING A PATH BETWEEN TWO VERTICES (OR NODES) IN A GRAPH SUCH THAT THE SUM OF THE WEIGHTS OF ITS CONSTITUENT EDGES IS MINIMIZED
Shortest path; All pairs shortest path problem; All-pairs shortest path problem; All-pairs shortest path; All pairs shortest path; Shortest path algorithms; Shortest Path Algorithms; Shortest path algorithm; Single-destination shortest-path problem; Single-pair shortest-path problem; Single-source shortest-path problem; The Shortest Paths; Negative cycle; DAG shortest paths; Single destination shortest path problem; Single-destination shortest path problem; Singledestination shortest path problem; Single destination shortest-path problem; Singledestination shortest-path problem; Single destination shortestpath problem; Single-destination shortestpath problem; Singledestination shortestpath problem; Shortest-path problem; Shortestpath problem; Shortest-path; Shortestpath; Shortest path problems; Shortest-path problems; Shortestpath problems; Shortest paths; Shortest-paths; Shortestpaths; Single-source shortest path problem; Single source shortest path problem; Singlesource shortest path problem; Single source shortest-path problem; Singlesource shortest-path problem; Single source shortestpath problem; Single-source shortestpath problem; Singlesource shortestpath problem; Apsp; Shortest Path Problem; Shortest path routing; Shortest-path routing; Single-source shortest-paths algorithms for directed graphs with nonnegative weights; APSP; Shortest-path algorithms; Shortest-distance problems; Applications of shortest path algorithms; Algebraic path problem; Graph geodesic

теория графов

алгоритм поиска кратчайшего маршрута

shortest path         
PROBLEM OF FINDING A PATH BETWEEN TWO VERTICES (OR NODES) IN A GRAPH SUCH THAT THE SUM OF THE WEIGHTS OF ITS CONSTITUENT EDGES IS MINIMIZED
Shortest path; All pairs shortest path problem; All-pairs shortest path problem; All-pairs shortest path; All pairs shortest path; Shortest path algorithms; Shortest Path Algorithms; Shortest path algorithm; Single-destination shortest-path problem; Single-pair shortest-path problem; Single-source shortest-path problem; The Shortest Paths; Negative cycle; DAG shortest paths; Single destination shortest path problem; Single-destination shortest path problem; Singledestination shortest path problem; Single destination shortest-path problem; Singledestination shortest-path problem; Single destination shortestpath problem; Single-destination shortestpath problem; Singledestination shortestpath problem; Shortest-path problem; Shortestpath problem; Shortest-path; Shortestpath; Shortest path problems; Shortest-path problems; Shortestpath problems; Shortest paths; Shortest-paths; Shortestpaths; Single-source shortest path problem; Single source shortest path problem; Singlesource shortest path problem; Single source shortest-path problem; Singlesource shortest-path problem; Single source shortestpath problem; Single-source shortestpath problem; Singlesource shortestpath problem; Apsp; Shortest Path Problem; Shortest path routing; Shortest-path routing; Single-source shortest-paths algorithms for directed graphs with nonnegative weights; APSP; Shortest-path algorithms; Shortest-distance problems; Applications of shortest path algorithms; Algebraic path problem; Graph geodesic

математика

кратчайший путь

negative cycle         
PROBLEM OF FINDING A PATH BETWEEN TWO VERTICES (OR NODES) IN A GRAPH SUCH THAT THE SUM OF THE WEIGHTS OF ITS CONSTITUENT EDGES IS MINIMIZED
Shortest path; All pairs shortest path problem; All-pairs shortest path problem; All-pairs shortest path; All pairs shortest path; Shortest path algorithms; Shortest Path Algorithms; Shortest path algorithm; Single-destination shortest-path problem; Single-pair shortest-path problem; Single-source shortest-path problem; The Shortest Paths; Negative cycle; DAG shortest paths; Single destination shortest path problem; Single-destination shortest path problem; Singledestination shortest path problem; Single destination shortest-path problem; Singledestination shortest-path problem; Single destination shortestpath problem; Single-destination shortestpath problem; Singledestination shortestpath problem; Shortest-path problem; Shortestpath problem; Shortest-path; Shortestpath; Shortest path problems; Shortest-path problems; Shortestpath problems; Shortest paths; Shortest-paths; Shortestpaths; Single-source shortest path problem; Single source shortest path problem; Singlesource shortest path problem; Single source shortest-path problem; Singlesource shortest-path problem; Single source shortestpath problem; Single-source shortestpath problem; Singlesource shortestpath problem; Apsp; Shortest Path Problem; Shortest path routing; Shortest-path routing; Single-source shortest-paths algorithms for directed graphs with nonnegative weights; APSP; Shortest-path algorithms; Shortest-distance problems; Applications of shortest path algorithms; Algebraic path problem; Graph geodesic

математика

отрицательный цикл

scenic highway         
  • Marker used for National Scenic Byways in the United States
SPECIALLY DESIGNATED ROAD OR WATERWAY OF INTEREST
Scenic byway; Theme routes; Tourist highway; Scenic highway; Scenic drive; Scenic Route; Holiday route; Tourist route; Ferienstraße; Scenic routes; Tourist drive; Holiday road; Theme route; Holiday Route; Scenic road
автомобильная дорога, вписанная в ландшафт
scenic road         
  • Marker used for National Scenic Byways in the United States
SPECIALLY DESIGNATED ROAD OR WATERWAY OF INTEREST
Scenic byway; Theme routes; Tourist highway; Scenic highway; Scenic drive; Scenic Route; Holiday route; Tourist route; Ferienstraße; Scenic routes; Tourist drive; Holiday road; Theme route; Holiday Route; Scenic road
дорога, сооружённая с учётом архитектурно-ландшафтных требований
scenic road         
  • Marker used for National Scenic Byways in the United States
SPECIALLY DESIGNATED ROAD OR WATERWAY OF INTEREST
Scenic byway; Theme routes; Tourist highway; Scenic highway; Scenic drive; Scenic Route; Holiday route; Tourist route; Ferienstraße; Scenic routes; Tourist drive; Holiday road; Theme route; Holiday Route; Scenic road

строительное дело

дорога, сооружённая с учётом архитектурно-ландшафтных требований

scenic highway         
  • Marker used for National Scenic Byways in the United States
SPECIALLY DESIGNATED ROAD OR WATERWAY OF INTEREST
Scenic byway; Theme routes; Tourist highway; Scenic highway; Scenic drive; Scenic Route; Holiday route; Tourist route; Ferienstraße; Scenic routes; Tourist drive; Holiday road; Theme route; Holiday Route; Scenic road

строительное дело

автомобильная дорога, вписанная в ландшафт

Определение

Modelled

Википедия

Shortest common supersequence problem

In computer science, the shortest common supersequence of two sequences X and Y is the shortest sequence which has X and Y as subsequences. This is a problem closely related to the longest common subsequence problem. Given two sequences X = < x1,...,xm > and Y = < y1,...,yn >, a sequence U = < u1,...,uk > is a common supersequence of X and Y if items can be removed from U to produce X and Y.

A shortest common supersequence (SCS) is a common supersequence of minimal length. In the shortest common supersequence problem, two sequences X and Y are given, and the task is to find a shortest possible common supersequence of these sequences. In general, an SCS is not unique.

For two input sequences, an SCS can be formed from a longest common subsequence (LCS) easily. For example, the longest common subsequence of X [ 1.. m ] = a b c b d a b {\displaystyle [1..m]=abcbdab} and Y [ 1.. n ] = b d c a b a {\displaystyle [1..n]=bdcaba} is Z [ 1.. L ] = b c b a {\displaystyle [1..L]=bcba} . By inserting the non-LCS symbols into Z while preserving their original order, we obtain a shortest common supersequence U [ 1.. S ] = a b d c a b d a b {\displaystyle [1..S]=abdcabdab} . In particular, the equation L + S = m + n {\displaystyle L+S=m+n} holds for any two input sequences.

There is no similar relationship between shortest common supersequences and longest common subsequences of three or more input sequences. (In particular, LCS and SCS are not dual problems.) However, both problems can be solved in O ( n k ) {\displaystyle O(n^{k})} time using dynamic programming, where k {\displaystyle k} is the number of sequences, and n {\displaystyle n} is their maximum length. For the general case of an arbitrary number of input sequences, the problem is NP-hard.

Как переводится shortest-route model на Русский язык