spurious message - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

spurious message - перевод на русский

AMOUNT OF CIPHERTEXT NEEDED TO UNAMBIGUOUSLY BREAK AN ENCRYPTION SYSTEM
Spurious key

spurious message      
случайное сообщение случайное сообщение
spurious correlation         
MATHEMATICAL RELATIONSHIP IN WHICH TWO OR MORE EVENTS OR VARIABLES ARE ASSOCIATED BUT NOT CAUSALLY RELATED, DUE TO EITHER COINCIDENCE OR THE PRESENCE OF A CERTAIN THIRD, UNSEEN FACTOR
Joint effect; Nonspuriousness; Non-spuriousness; Third Variable Problem; Fallacy of causation; Spurious correlation; Specious correlation
фальшивая корреляция; корреляция между двумя переменными при отсутствии причинной связи между ними.
message passing         
MECHANISM FOR INTERPROCESS COMMUNICATION
Message passing programming; Message Passing; Message-based protocol; Message-passing; Message-based; Message (object-oriented programming); Asynchronous message passing; Synchronous message passing

общая лексика

передача сообщений, обмен сообщениями

один из двух способов организации взаимодействия между параллельными процессами (другой - shared memory)

Определение

message passing
One of the two techniques for communicating between parallel processes (the other being shared memory). A common use of message passing is for communication in a parallel computer. A process running on one processor may send a message to a process running on the same processor or another. The actual transmission of the message is usually handled by the run-time support of the language in which the processes are written, or by the operating system. Message passing scales better than shared memory, which is generally used in computers with relatively few processors. This is because the total communications bandwidth usually increases with the number of processors. A message passing system provides primitives for sending and receiving messages. These primitives may by either synchronous or asynchronous or both. A synchronous send will not complete (will not allow the sender to proceed) until the receiving process has received the message. This allows the sender to know whether the message was received successfully or not (like when you speak to someone on the telephone). An asynchronous send simply queues the message for transmission without waiting for it to be received (like posting a letter). A synchronous receive primitive will wait until there is a message to read whereas an asynchronous receive will return immediately, either with a message or to say that no message has arrived. Messages may be sent to a named process or to a named mailbox which may be readable by one or many processes. Transmission involves determining the location of the recipient and then choosing a route to reach that location. The message may be transmitted in one go or may be split into packets which are transmitted independently (e.g. using wormhole routing) and reassembled at the receiver. The message passing system must ensure that sufficient memory is available to buffer the message at its destination and at intermediate nodes. Messages may be typed or untyped at the programming language level. They may have a priority, allowing the receiver to read the highest priority messages first. Some message passing computers are the {MIT J-Machine (http://ai.mit.edu/projects/cva/cva_j_machine.html)}, the {Illinois Concert Project (http://www-csag.cs.uiuc.edu/projects/concert.html)} and transputer-based systems. Object-oriented programming uses message passing between objects as a metaphor for procedure call. (1994-11-11)

Википедия

Unicity distance

In cryptography, unicity distance is the length of an original ciphertext needed to break the cipher by reducing the number of possible spurious keys to zero in a brute force attack. That is, after trying every possible key, there should be just one decipherment that makes sense, i.e. expected amount of ciphertext needed to determine the key completely, assuming the underlying message has redundancy.

Claude Shannon defined the unicity distance in his 1949 paper "Communication Theory of Secrecy Systems".

Consider an attack on the ciphertext string "WNAIW" encrypted using a Vigenère cipher with a five letter key. Conceivably, this string could be deciphered into any other string—RIVER and WATER are both possibilities for certain keys. This is a general rule of cryptanalysis: with no additional information it is impossible to decode this message.

Of course, even in this case, only a certain number of five letter keys will result in English words. Trying all possible keys we will not only get RIVER and WATER, but SXOOS and KHDOP as well. The number of "working" keys will likely be very much smaller than the set of all possible keys. The problem is knowing which of these "working" keys is the right one; the rest are spurious.

Как переводится spurious message на Русский язык