variedade diferenciável - определение. Что такое variedade diferenciável
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое variedade diferenciável - определение

Variedade matemática; Manifold; Variedade diferenciável; Variedades
  • Quatro cartas de um [[círculo]].

Variedade (matemática)         
thumb|O [[Plano projectivo real|plano projetivo real é uma variedade bidimensional que não pode ser realizada em três dimensões sem autointerseções, mostrada aqui como a superfície de Boy.]]
Variedade de Riemann         
Em geometria de Riemann, uma variedade de Riemann (a designação variedade riemanniana também é encontrada) é uma variedade diferenciável real na qual cada espaço tangente é dotado de um produto interior de maneira que varie suavemente ponto a ponto. Isto permite que se definam várias noções métricas como comprimento de curvas, ângulos, áreas (ou volumes), curvaturas, gradientes de funções e divergência de campos vetoriais.
Variedade (biologia)         
  • rosas]]
Em taxonomia, variedade é um escalão taxonómico inferior a espécie. Um grupo de organismos vivos pertencentes à mesma variedade apresenta características em comum que o diferencia em um determinado genótipo ou fenótipo de outras variedades da mesma espécie, mas não apresenta diferenças significativas em relação a um outro grupo de organismos com o qual compartilha muitas características e com o qual consegue reproduzir-se livremente.

Википедия

Variedade (matemática)

Em matemática, uma variedade é um espaço topológico que se parece localmente com um espaço euclidiano nas vizinhanças de cada ponto. Mais precisamente, cada ponto de uma variedade de dimensão n tem uma vizinhança que é homeomorfa ao espaço euclidiano de dimensão n. Nesta terminologia mais precisa, uma variedade é chamada de n-variedade.

Variedades unidimensionais incluem as retas e circunferências, mas não as lemniscatas (pois elas possuem pontos de cruzamento). As variedades bidimensionais também são chamadas de superfícies. Os exemplos incluem o plano, a esfera e o toro, que podem ser imersos (formados sem autointerseções) no espaço tridimensional, e também a garrafa de Klein e o plano projetivo real, que sempre terão autointerseções quando imersos no espaço tridimensional real.

As variedades são de interesse no estudo da geometria, da topologia, e da análise.

As variedades podem ser equipadas com alguma estrutura adicional. Uma classe importante de variedades é a das variedades diferenciáveis; esta estrutura diferenciável permite que o cálculo seja feito sobre variedades. Uma métrica Riemanniana permite que sejam medidas distâncias e ângulos. As variedades simpléticas servem como espaço de fase no formalismo Hamiltoniano da mecânica clássica, enquanto que a variedade lorentziana de dimensão quatro modela o espaço-tempo na relatividade geral.