factor espaço - перевод на
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

factor espaço - перевод на

ESTRUTURA MATEMÁTICA FORMADA POR UMA COLEÇÃO DE ELEMENTOS CHAMADOS DE VETORES
Espaço vectorial; Espaço linear; Espaço primal; Espaço Vetorial

espaço vetorial         
векторное пространство
espaço em branco         
ÁREA EM BRANCO QUE SEPARA PALAVRAS, SENTENÇAS, SÍLABAS OU OUTROS GRIFOS ESCRITOS OU IMPRESSOS; REGRAS TIPOGRÁFICAS PRECISAS DIFEREM DE ACORDO COM O IDIOMA E O CONTEXTO
Espaço em branco; Espaço (pontuação)
пробел (в тексте)
espaço vetorial         
векторное пространство

Определение

Простое число

целое положительное число, большее, чем единица, не имеющее других делителей, кроме самого себя и единицы: 2, 3, 5, 7, 11, 13,... Понятие П. ч. является основным при изучении делимости натуральных (целых положительных) чисел; именно, основная теорема теории делимости устанавливает, что всякое целое положительное число, кроме 1, единственным образом разлагается в произведении П. ч. (порядок сомножителей при этом не принимается во внимание). П. ч. бесконечно много (это предложение было известно ещё древнегреческим математикам, его доказательство имеется в 9-й книге "Начал" Евклида). Вопросы делимости натуральных чисел, а следовательно, вопросы, связанные с П. ч., имеют важное значение при изучении групп (См. Группа); в частности, строение группы с конечным числом элементов тесно связано с тем, каким образом это число элементов (порядок группы) разлагается на простые множители. В теории алгебраических чисел (См. Алгебраическое число) рассматриваются вопросы делимости целых алгебраических чисел; понятия П. ч. оказалось недостаточным для построения теории делимости - это привело к созданию понятия Идеала. П. Г. Л. Дирихле в 1837 установил, что в арифметической прогрессии а + bx при х = 1, 2,... с целыми взаимно простыми а и b содержится бесконечно много П. ч.

Выяснение распределения П. ч. в натуральном ряде чисел является весьма трудной задачей чисел теории (См. Чисел теория). Она ставится как изучение асимптотического поведения функции π(х), обозначающей число П. ч., не превосходящих положительного числа х. Первые результаты в этом направлении принадлежат П. Л. Чебышеву, который в 1850 доказал, что имеются такие две такие постоянные а и А, что < π(x) < при любых x 2 [т. е., что π(х) растет, как функция ]. Хронологически следующим значительным результатом, уточняющим теорему Чебышева, является т. н. асимптотический закон распределения П. ч. (Ж. Адамар, 1896, Ш. Ла Валле Пуссен, 1896), заключающийся в том, что предел отношения π(х) к равен 1.

В дальнейшем значительные усилия математиков направлялись на уточнение асимптотического закона распределения П. ч. Вопросы распределения П. ч. изучаются и элементарными методами, и методами математического анализа. Особенно плодотворным является метод, основанный на использовании тождества

(произведение распространяется на все П. ч. р = 2, 3,...), впервые указанного Л. Эйлером; это тождество справедливо при всех комплексных s с вещественной частью, большей единицы. На основании этого тождества вопросы распределения П. ч. приводятся к изучению специальной функции - дзета-функции (См. Дзета-функция) ξ(s), определяемой при Res > 1 рядом

Эта функция использовалась в вопросах распределения П. ч. при вещественных s Чебышевым; Б. Риман указал на важность изучения ξ(s) при комплексных значениях s. Риман высказал гипотезу о том, что все корни уравнения ξ(s) = 0, лежащие в правой полуплоскости, имеют вещественную часть, равную 1/2. Эта гипотеза до настоящего времени (1975) не доказана; её доказательство дало бы весьма много в решении вопроса о распределении П. ч. Вопросы распределения П. ч. тесно связаны с Гольдбаха проблемой (См. Гольдбаха проблема), с не решенной ещё проблемой "близнецов" и другими проблемами аналитической теории чисел. Проблема "близнецов" состоит в том, чтобы узнать, конечно или бесконечно число П. ч., разнящихся на 2 (таких, например, как 11 и 13). Таблицы П. ч., лежащих в пределах первых 11 млн. натуральных чисел, показывают наличие весьма больших "близнецов" (например, 10006427 и 10006429), однако это не является доказательством бесконечности их числа. За пределами составленных таблиц известны отдельные П. ч., допускающие простое арифметическое выражение [например, установлено (1965), что 211213 -1 есть П. ч.; в нём 3376 цифр].

Лит.: Виноградов И. М., Основы теории чисел, 8 изд., М., 1972; Хассе Г., Лекции по теории чисел, пер. с нем., М., 1953; Ингам А. Е., Распределение простых чисел, пер. с англ., М. - Л., 1936; Прахар К., Распределение простых чисел, пер. с нем., М., 1967; Трост Э., Простые числа, пер, с нем., М., 1959.

Википедия

Espaço vetorial

Um espaço vetorial (também chamado de espaço linear) é uma coleção de objetos chamada vetores, que podem ser somados um a outro e multiplicados ("escalonados") por números, denominados escalares. Os números reais são escalares frequentemente utilizados, mas também existem espaços vetoriais com multiplicação por números complexos, números racionais; em geral, por qualquer corpo. As operações de adição de vetores e multiplicação por escalar precisam satisfazer certas propriedades, denominadas axiomas (listados abaixo, em § Definição). Para explicitar se os escalares são números reais ou complexo, os termos espaço vetorial real e espaço vetorial complexo são frequentemente utilizados.

Vetores euclidianos são um exemplo de espaço vetorial. Eles representam quantidades físicas como forças: quaisquer duas forças (do mesmo tipo) podem ser somadas para resultar em uma terceira, enquanto que a multiplicação de um vetor de força por um número real gera outro vetor de força. De forma semelhante, porém com um sentido mais geométrico, vetores que representam deslocamentos em um plano ou em um espaço tridimensional também formam espaços vetoriais. Vetores em espaços vetoriais não necessitam ser objetos do tipo seta, como aparecem nos exemplos mencionados acima; vetores são tratados como entidades matemáticas abstratas com propriedades particulares, que, em alguns casos, podem ser visualizados por setas.

Espaços vetoriais são o objeto de estudo da álgebra linear e são bem caracterizados pela sua dimensão, que, grosso modo, especifica o número de direções independentes no espaço. Espaços vetoriais de dimensão infinita surgem naturalmente em análise matemática, como em espaços funcionais, cujos vetores são funções. Esses espaços vetoriais são munidos em geral de uma estrutura adicional, que pode ser uma topologia, permitindo a consideração de conceitos como proximidade e continuidade. Dentre essas topologias, aquelas que são definidas por uma norma ou um produto interno são mais frequentemente utilizadas, por possuírem uma noção de distância entre dois vetores. Esse é o caso particularmente com os espaços de Banach e os espaços de Hilbert, que são fundamentais em análise matemática.

Historicamente, as primeiras ideias que levaram ao conceito de espaços vetoriais podem ser associadas aos avanços, durante o século XVII, nas áreas de geometria analítica, matrizes, sistemas de equações lineares, e vetores euclidianos. O tratamento moderno e mais abstrato, formulado pela primeira vez por Giuseppe Peano em 1888, contém objetos mais gerais que o espaço euclidiano, mas muito da teoria pode ser visto como uma extensão de ideias da geometria clássica como retas, planos, e seus análogos de dimensão mais alta. Atualmente, os espaços vetoriais permeiam a matemática, a ciência e a engenharia. Eles são a noção apropriada da álgebra linear para lidar com sistemas de equações lineares. Eles oferecem um escopo para as séries de Fourier, que são utilizadas em métodos de compressão de imagens, e eles fornecem um ambiente que pode ser utilizado para técnicas de solução de equações diferenciais parciais. Ademais, espaços vetoriais fornecem uma maneira abstrata, livre de coordenadas, de lidar com objetos geométricos e físicos como tensores. Isso por sua vez permite a análise de propriedades locais variedades por técnicas de linearização. Espaços vetoriais podem ser generalizados de diversas maneiras, acarretando noções mais avançadas em geometria e em álgebra abstrata.

Não é necessário que os vetores tenham interpretação geométrica, mas podem ser quaisquer objetos que satisfaçam os axiomas abaixo. Polinômios de grau menor ou igual a n {\displaystyle n} ( n N {\displaystyle n\in \mathbb {N} } ) formam um espaço vetorial, por exemplo, assim como grupos de matrizes m × n {\displaystyle m\times n} e o espaço de todas as funções de um conjunto no conjunto R dos números reais.