АЭРОДИНАМИКА: АЭРОДИНАМИЧЕСКОЕ НАГРЕВАНИЕ - определение. Что такое АЭРОДИНАМИКА: АЭРОДИНАМИЧЕСКОЕ НАГРЕВАНИЕ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое АЭРОДИНАМИКА: АЭРОДИНАМИЧЕСКОЕ НАГРЕВАНИЕ - определение

Аэродинамическое качество самолета; Аэродинамическое качество самолёта; Гидроаэродинамическое качество; Коэффициент обтекаемости; Обтекаемость; Планирующий полёт; Качество аэродинамическое; Качество (аэродинамика); Качество (авиация); Качество летательного аппарата; Планирование (авиация)
Найдено результатов: 43
АЭРОДИНАМИКА: АЭРОДИНАМИЧЕСКОЕ НАГРЕВАНИЕ      
К статье АЭРОДИНАМИКА
Нагревание тела, движущегося с большой скоростью, описывается теоретическим уравнением энергии, приведенным в разделе "Фундаментальные законы". Формула, которая может рассматриваться как первое приближение к реальности, записывается в виде
где T0 - температура торможения, т.е. абсолютная температура частицы воздуха, когда она тормозится до состояния покоя (как, например, в носовой части тела), v - скорость и cр - удельная теплоемкость при постоянном давлении, равная 1000 м2/с2 К. Эту формулу можно также представить в виде
T0 - T = v2/2ср.
Следовательно, в точке торможения (точке A на рис. 8,а) температура воздуха на величину v2/2000 выше температуры воздуха в окружающей атмосфере. Например, для тела, движущегося с М = 10 на высоте, соответствующей уровню моря (a = 340,3 м/с), температура воздуха должна быть на 5800 К выше температуры окружающего воздуха. В действительности температура торможения меньше по ряду причин, из которых наиболее существенной является то, что часть энергии воздуха расходуется в процессах диссоциации, в которых молекулы разлагаются на составляющие их атомы, и ионизации, в которых электроны отрываются от атомных ядер. Эти процессы осложняют описание явления аэродинамического нагревания, однако не устраняют связанных с ним проблем.
Столь высокая температура, которая близка к температуре на поверхности Солнца, создает одну из наиболее серьезных проблем высокоскоростного полета. Полет с M = 10 в атмосфере невозможен, так как все известные материалы плавятся и испаряются при температурах, даже более низких, чем 6000 К. (Наиболее тугоплавкий из металлов - вольфрам - плавится при температуре 3700 К. Керамические материалы и керметы - смеси керамических материалов с металлами - плавятся при температуре 2500 К или еще ниже.) Практическое решение состоит в том, чтобы высокоскоростной полет осуществлялся на очень больших высотах, а затем происходило быстрое снижение летательного аппарата (стадия спуска) с быстрым уменьшением скорости в тех областях, где аэродинамическое нагревание будет наибольшим. Чтобы осуществить быстрое торможение, спускаемый аппарат должен обладать большим сопротивлением (сопротивление формы намного больше сопротивления трения). Высокий коэффициент сопротивления не является помехой для полета на очень больших высотах, так как там вследствие разреженности воздуха малы как сила сопротивления, так и тепловые потоки к поверхности тела. При быстром торможении на первоначальной стадии спуска в атмосфере скорость уменьшается до значений, при которых температура торможения уже не будет столь высокой.
Рекомендации для прохождения атмосферы, как и для входа в атмосферу, могут быть сформулированы в терминах летного коридора, показанного на рис. 16. Ограничение на высоту установившегося полета следует из условия, что сумма аэродинамической подъемной и центробежной сил должна превышать силу тяжести. Аэродинамическая подъемная сила пропорциональна плотности воздуха и квадрату скорости полета, а центробежная сила (эта сила удерживает, например, спутник на околоземной орбите) пропорциональна квадрату скорости полета. Следовательно, при низких скоростях полета плотность воздуха должна быть достаточно большой (соответственно - высота должна быть достаточно низкой), чтобы аэродинамическая подъемная сила компенсировала большую часть силы тяжести, тогда как при больших скоростях полета на больших высотах центробежная сила будет полностью компенсировать силу тяжести. На основе этих соображений определяется верхняя граница летного коридора (рис. 16). Область над этой границей обозначена символически как G Y + ЦС, где G - сила тяжести (вес летательного аппарата), Y - подъемная сила и ЦС - центробежная сила. Положение нижней границы летного коридора, показанного на рис. 16, определено из условия, что допустимая температура обшивки летательного аппарата равна 1600 К. Положение верхней границы зависит от веса тела и площади несущей поверхности; положение нижней границы определяется предельной температурой, при которой материал обшивки сохраняет необходимые прочностные свойства. Ясно, что для поддержания непрерывного полета необходимо, чтобы изображающая летательный аппарат точка, определяемая значениями высоты и скорости полета, попадала внутрь летного коридора. Показанные на рисунке траектории спуска тем не менее пересекают нижнюю границу (время прохождения атмосферы настолько мало, что обшивка не успевает нагреться до температуры торможения).
Влияние вязкости. Вследствие прилипания текущей среды всюду на поверхности летательного аппарата температура воздуха близка к температуре торможения. Наибольшие проблемы возникают вблизи точки торможения по двум причинам: во-первых, в эту область поступает воздух, который претерпевает сжатие в головной ударной волне, и, следовательно, тепловые потоки здесь больше, чем на других участках поверхности тела летательного аппарата; во-вторых, температура у поверхности на некотором удалении от точки торможения несколько меньше температуры торможения.
Сопротивление формы и сопротивление трения существенно зависят от скорости полета, однако принципы, сформулированные при рассмотрении течений несжимаемой жидкости, остаются неизменными. Коэффициенты трения для ламинарного и турбулентного режимов течения начинают заметно уменьшаться при M 3, однако по-прежнему турбулентное сопротивление трения существенно выше ламинарного.
обтекаемость         
ОБТЕК'АЕМОСТЬ, обтекаемости, мн. нет, ·жен. (тех.). ·отвлеч. сущ. к обтекаемый
; обтекаемая форма.
обтекаемость         
ж.
Отвлеч. сущ. по знач. прил.: обтекаемый.
Индукционный нагрев         
  • Пример установки индукционной запайки фольгой
Индукцио́нный нагре́в — метод бесконтактного нагрева электропроводящих материалов токами высокой частоты и большой величины.
Индукционный нагрев         
  • Пример установки индукционной запайки фольгой

нагрев токопроводящих тел за счёт возбуждения в них электрических токов переменным электромагнитным полем. Мощность, выделяющаяся в проводнике при И. н., зависит от размеров и физических свойств проводника (удельного электрического сопротивления, относительной магнитной проницаемости), а также от частоты и напряжённости электромагнитного поля. Источниками электромагнитного поля при И. н. служат индукторы (см. Индуктор нагревательный). И. н. характеризуется неравномерным выделением мощности в нагреваемом объекте. В поверхностном слое, называемом глубиной проникновения, выделяется 86\% всей мощности. Глубина проникновения тока Δ (м) равна: где ρ - удельное электрическое сопротивление (омм), μ - относительная магнитная проницаемость, f - частота (гц).

Для создания переменного электромагнитного поля при И. н. используются токи низкой (50 гц), средней (до 10 кгц) и высокой (свыше 10 кгц) частоты. Для питания индукторов токами средней и высокой частоты применяют машинные и статические преобразователи, а также ламповые генераторы.

К наиболее распространённым процессам, использующим И. н., относятся: плавка металлов (см. Индукционная печь), Зонная плавка, нагрев под обработку давлением (см. Индукционная нагревательная установка) и др. И. н. - наиболее совершенный бесконтактный способ передачи электроэнергии в нагреваемое тело с непосредственным преобразованием её в тепловую. Принципиальная схема установки с использованием И. н. приведена на рис. О нагреве диэлектриков электромагнитным полем см. в ст. Диэлектрический нагрев.

Лит.: Бабат Г. И., Индукционный нагрев металлов и его промышленное применение, 2 изд., М.-Л., 1965; Высокочастотная электротермия. Справочник, М.-Л., 1965; Электротермическое оборудование. Справочник, М., 1967.

А. Б. Кувалдин.

Схема установки индукционного нагрева: 1 - источник питания; 2 - блок реактивной ёмкостной мощности (конденсатор); 3 - индуктор; 4 - футерованное технологическое пространство (тигель); 5 - нагреваемый объект.

ИНДУКЦИОННЫЙ НАГРЕВ         
  • Пример установки индукционной запайки фольгой
нагрев токопроводящих тел путем возбуждения в них электрических токов переменным электромагнитным полем. Для создания последнего используются токи низкой (50 Гц), средней (до 10 кГц) и высокой (св. 10 кГц) частоты. Применяется для плавления металлов, поверхностной закалки деталей и т. д.
Аэродинамический фокус         
Аэродинами́ческий фо́кус тела, обтекаемого потоком — точка, относительно которой (при симметричной обдувке) суммарный момент аэродинамических сил имеет постоянную величину, не зависящую от угла атаки, иначе говоря — точка приложения вектора прироста подъёмной силы, вызванного изменением угла атаки.
ГИДРОДИНАМИЧЕСКОЕ СОПРОТИВЛЕНИЕ         
  • Четыре силы, действующие на самолёт
  • 94px
  • 94px
  • 94px
  • 94px
  • Сопротивление воздуха
СИЛА, ПРЕПЯТСТВУЮЩАЯ ДВИЖЕНИЮ ТЕЛ В ЖИДКОСТЯХ И ГАЗАХ
Вредное сопротивление; Аэродинамическое сопротивление; Сопротивление аэродинамическое; Коэффициент лобового сопротивления; Сопротивление воздуха; Лобовое сопротивление (аэродинамика); Сила сопротивления; Гидродинамическое сопротивление; Индуктивное сопротивление в аэродинамике; Сила сноса; Сопротивление гидродинамическое
сила, возникающая при движении тела в жидкости или несжимаемом газе, а также при течении жидкости или газа в канале.
Аэродинамическое сопротивление         
  • Четыре силы, действующие на самолёт
  • 94px
  • 94px
  • 94px
  • 94px
  • Сопротивление воздуха
СИЛА, ПРЕПЯТСТВУЮЩАЯ ДВИЖЕНИЮ ТЕЛ В ЖИДКОСТЯХ И ГАЗАХ
Вредное сопротивление; Аэродинамическое сопротивление; Сопротивление аэродинамическое; Коэффициент лобового сопротивления; Сопротивление воздуха; Лобовое сопротивление (аэродинамика); Сила сопротивления; Гидродинамическое сопротивление; Индуктивное сопротивление в аэродинамике; Сила сноса; Сопротивление гидродинамическое

лобовое сопротивление, сила, с которой газ (например, воздух) действует на движущееся в нём тело; эта сила направлена всегда в сторону, противоположную скорости, и является одной из составляющих аэродинамической силы. Знание Л. с. необходимо для аэродинамического расчёта летательных аппаратов, т. к. от него зависит, в частности, скорость движения при заданных тяговых характеристиках двигательной установки.

А. с. - результат необратимого перехода части кинетической энергии тела в тепло. Зависит А. с. от формы и размеров тела, ориентации его относительно направления скорости, значения скорости, а также от свойств и состояния среды, в которой происходит движение. В реальных средах имеют место: вязкое трение в пограничном слое (См. Пограничный слой) между поверхностью тела и средой, потери на образование ударных волн при около- и сверхзвуковых скоростях движения (Волновое сопротивление) и на вихреобразование. В зависимости от режима полёта и формы тела будут преобладать те или иные компоненты А. с. Например, для затупленных тел вращения, движущихся с большой сверхзвуковой скоростью, А. с. определяется в основном волновым сопротивлением. У хорошо обтекаемых тел, движущихся с небольшой скоростью, А. с. определяется сопротивлением трения и потерями на вихреобразование.

В аэродинамике А. с. характеризуют безразмерным аэродинамическим коэффициентом (См. Аэродинамические коэффициенты) сопротивления Cx, с помощью которого А. с. Х определяется как

где ρ - плотность невозмущённой среды, v - скорость движения тела относительно этой среды, S - характерная площадь тела. Коэффициент Cx тела заданной формы при известной ориентации его относительно потока зависит от безразмерных подобия критериев (См. Подобия критерии): М-числа (См. М-число), Рейнольдса числа (См. Рейнольдса число) и др. Численные значения Cx обычно определяют экспериментально, измеряя А. с. моделей в аэродинамических трубах (См. Аэродинамическая труба) и других установках, используемых при аэродинамическом эксперименте. Теоретическое определение А. с. возможно лишь для ограниченного класса простейших тел.

Ю. А. Рыжов.

Гидродинамическое сопротивление         
  • Четыре силы, действующие на самолёт
  • 94px
  • 94px
  • 94px
  • 94px
  • Сопротивление воздуха
СИЛА, ПРЕПЯТСТВУЮЩАЯ ДВИЖЕНИЮ ТЕЛ В ЖИДКОСТЯХ И ГАЗАХ
Вредное сопротивление; Аэродинамическое сопротивление; Сопротивление аэродинамическое; Коэффициент лобового сопротивления; Сопротивление воздуха; Лобовое сопротивление (аэродинамика); Сила сопротивления; Гидродинамическое сопротивление; Индуктивное сопротивление в аэродинамике; Сила сноса; Сопротивление гидродинамическое

сопротивление движению тела со стороны обтекающей его жидкости или сопротивление движению жидкости, вызванное влиянием стенок труб, каналов и т.д. При обтекании неподвижного. тела потоком жидкости (газа) или, наоборот, когда тело движется в неподвижной среде, Г. с. представляет собой проекцию главного вектора всех действующих на тело сил на направление движения. Г. с.

где ρ - плотность среды, v - скорость, S - характерная для данного тела площадь. Безразмерный коэффициент Г. с. сх зависит от формы тела, его положения относительно направления движения и чисел подобия (см. Подобия критерии). Силу, с которой жидкость действует на каждый элемент поверхности движущегося тела, можно разложить на нормальную и касательную составляющие, т. е. на силу давления и силу трения. Проекция результирующей всех сил давления на направление движения даёт Г. с. давления, а проекция результирующей всех сил трения на направление движения - Г. с. трения. Тела, у которых сопротивление от сил давления мало по сравнению с сопротивлением от сил трения, считаются хорошо обтекаемыми. Г. с. плохо обтекаемых тел определяется почти полностью сопротивлением давления. При движении тел вблизи поверхности воды образуются волны, в результате чего возникает Волновое сопротивление.

При протекании жидкости по трубам, каналам и т.д. в гидравлике (См. Гидравлика) различают два вида Г. с.: сопротивление по длине, прямо пропорциональное длине участка потока, и местные сопротивления, связанные с изменением структуры потока на коротком участке при обтекании различных препятствий (в виде клапанов, задвижек и др.), а также при внезапном расширении или сужении потока или при изменении направления его течения. В гидравлических расчётах Г. с. оценивается величиной "потерянного" напора hv, представляющего собой ту часть удельной энергии потока, которая необратимо расходуется на работу сил сопротивления.

Значение hv по длине трубы при напорном движении вычисляется по формуле Дарси

где λ - коэффициент сопротивления; l и d - длина и диаметр трубы; v - средняя скорость; g - ускорение свободного падения. Коэфф. λ определяется характером течения. При ламинарном течении (См. Ламинарное течение) он зависит только от Рейнольдса числа (См. Рейнольдса число) Re (линейный закон сопротивления), а при турбулентном течении - ещё и от шероховатости стенок трубы. При очень больших Re (порядка 10 и более) λ зависит только от шероховатости (квадратичный закон сопротивления). Местные Г. с. оцениваются общей формулой hv = ζv2/2g, где ζ, - коэффициент местного сопротивления, различный для разных препятствий; зависит от числа Re.

Числовые значения коэффициента λ и ζ распределяются по формулам, приводимым в справочниках. Определение величины hv для открытых потоков производится также по специальным формулам. Г. с. в открытых потоках и при движении в напорных трубопроводах обусловлены одними и теми же физическим причинами.

Правильное определение величины Г. с. имеет большое значение при проектировании и постройке самых разнообразных сооружений, установок и аппаратов (гидротехнические сооружения, турбинные установки, воздухо- и газоочистительные аппараты, газо-, нефте- и водопроводные магистрали, двигатели, компрессоры, насосы и т.д.).

Лит.: Агроскин И. И., Дмитриев Г. Т. и Пикалов Ф. И., Гидравлика, 4 изд., М. - Л., 1964; Идельчик И. Е., Справочник по гидравлическим сопротивлениям, М. - Л., 1960; Альтшуль А. Д., Гидравлические потери на трение в трубопроводах, М. - Л., 1963.

П. Г. Киселев.

Википедия

Аэродинамическое качество

Аэродинами́ческое ка́чество летательного аппарата — отношение подъёмной силы к лобовому сопротивлению (или отношение их коэффициентов) в поточной системе координат при данном угле атаки.

Что такое АЭРОДИНАМИКА: АЭРОДИНАМИЧЕСКОЕ НАГРЕВАНИЕ - определение