Алгебраическая функция - определение. Что такое Алгебраическая функция
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Алгебраическая функция - определение

Найдено результатов: 473
Алгебраическая функция         

функция, удовлетворяющая алгебраическому уравнению (См. Алгебраическое уравнение). А. ф. принадлежат к числу важнейших функций, изучаемых в математике. Из них многочлены и частные многочленов [например,

называются рациональными, а прочие А. ф. - иррациональными. Простейшими примерами последних могут служить А. ф., выражаемые с помощью радикалов [например,

Однако существуют А. ф., которые невозможно выразить через радикалы [например, функция у = f (х), удовлетворяющая уравнению: y5 + 3ух4 + x5 = 0]. Примерами неалгебраических, т. н. трансцендентных функций (См. Трансцендентные функции), встречающихся в школьном курсе алгебры, являются: степенная xα (если α - иррациональное число), показательная ах, логарифмическая и т. д. Общая теория А. ф. представляет обширную математическую дисциплину, имеющую важные связи с теорией аналитических функций (См. Аналитические функции) (А. ф. составляют специальный класс аналитических функций), алгеброй и алгебраической геометрией (См. Алгебраическая геометрия). Самая общая А. ф. многих переменных u = f(x, у, z, ...) определяется как функция, удовлетворяющая уравнению вида:

Ðî(õ, ó, z, ...)un + P1(x, y, z, ...)un-1 + ... +Pn(x, y, z, ...) = 0, (1)

где Р0, Р1, ..., Pn - какие-либо многочлены относительно х, у, z,... . Всё выражение, стоящее в левой части, представляет некоторый многочлен относительно х, у, z,... и n. Его можно считать неприводимым, т. е. не разлагающимся в произведение многочленов более низких степеней; кроме того, многочлен P0 можно считать не равным тождественно нулю. Если n = 1, то u представляет рациональную функцию (u = -P1/P0), частным случаем которой - целой рациональной функцией - является многочлен (если P0 = const ≠ 0). При n > 1 получается иррациональная функция; если n = 2, то она выражается через многочлены с помощью квадратного корня; если n = 3 или n = 4, то для u получается выражение, содержащее квадратные и кубические корни.

При n ≥ 5 число каких бы то ни было корней из многочленов. Иррациональная А. ф. всегда многозначна, а именно (при наших обозначениях и предположениях) является n-значной аналитической функцией переменных х, у, z,...

Лит.: Чеботарев Н. Г., Теория алгебраических функций, М. - Л., 1948.

АЛГЕБРАИЧЕСКАЯ ФУНКЦИЯ         
функция, связанная с независимым переменным алгебраическим уравнением.
Алгебраическая функция         
Алгебраическая функция — элементарная функция, которая в окрестности каждой точки области определения может быть неявно задана с помощью алгебраического уравнения.
Односторонняя функция         
Односторонняя функция — математическая функция, которая легко вычисляется для любого входного значения, но трудно найти аргумент по заданному значению функции. Здесь «легко» и «трудно» должны пониматься с точки зрения теории сложности вычислений.
Функция (программирование)         
ПОДПРОГРАММА, КОТОРУЮ МОЖНО ИСПОЛЬЗОВАТЬ В ВЫРАЖЕНИИ
Функция (информатика)
Фу́нкция в программировании, или подпрограмма — фрагмент программного кода, к которому можно обратиться из другого места программы. В большинстве случаев с функцией , но многие языки допускают и безымянные функции. С именем функции неразрывно связан адрес первой инструкции (оператора), входящей в функцию, которой передаётся управление при обращении к функции. После выполнения функции управление возвращается обратно в адрес возврата — точку программы, где данная функция была вызвана.
Кососимметрическая функция         
Кососимметрическая (или знакопеременная) функция — функция от нескольких переменных, не меняющаяся при чётных перестановках аргументов и меняющая знак при нечётных перестановках.
ДЕЛЬТА-ФУНКЦИЯ         
  • 200px
  • Функция Хевисайда.
  • 200px
  • График функции <math>\frac{\sin x}{x}.</math>
?-функция Дирака, символ, применяемый в математической физике при решении задач, в которые входят сосредоточенные величины (нагрузка, заряд и т. п.). Дельта-функция - простейшая обобщенная функция; она характеризует, напр., плотность распределения масс, при котором в одной точке сосредоточена единичная масса, а любой интервал, не содержащий этой точки, свободен от масс.
Дельта-функция         
  • 200px
  • Функция Хевисайда.
  • 200px
  • График функции <math>\frac{\sin x}{x}.</math>

δ-функция, δ-функция Дирака, δ(x), символ, применяемый в математической физике при решении задач, в которые входят сосредоточенные величины (сосредоточенная нагрузка, сосредоточенный заряд и т.д.). Д.-ф. может быть определена как плотность распределения масс, при которой в точке x = 0 сосредоточена единичная масса, а масса во всех остальных точках равна нулю. Поэтому полагают δ(x) = 0 при x ≠ 0 и δ(0) = ∞, причём

("бесконечный всплеск" "единичной интенсивности"). Более точно, Д.-ф. называется обобщённая функция (См. Обобщённые функции), определяемая равенством

имеющим место для всех непрерывных функций φ(x).

В теории обобщённых функций Д.-ф. называют сам функционал, определяемый этим равенством.

Дельта-функция         
  • 200px
  • Функция Хевисайда.
  • 200px
  • График функции <math>\frac{\sin x}{x}.</math>
Де́льта-фу́нкция (или дельта-мера, -функция, -функция Дирака, дираковская дельта, единичная импульсная функция) — обобщённая функция, которая позволяет записать точечное воздействие, а также пространственную плотность физических величин (масса, заряд, интенсивность источника тепла, сила ), сосредоточенных или приложенных в одной точке.
МОНОТОННАЯ ФУНКЦИЯ         
  • Рисунок 1. Монотонно возрастающая функция. Она строго возрастает слева и справа, а в центре не убывает.
  • Рисунок 2. Монотонно убывающая функция.
  • Рисунок 3. Функция, не являющаяся монотонной.
МАТЕМАТИЧЕСКАЯ ФУНКЦИЯ
Возрастающая функция; Убывающая функция; Строго возрастающая функция; Строго убывающая функция; Невозрастающая функция; Неубывающая функция; Монотонность функции
функция, которая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает).

Википедия

Алгебраическая функция

Алгебраическая функция — элементарная функция, которая в окрестности каждой точки области определения может быть неявно задана с помощью алгебраического уравнения.

Формальное определение:

Функция F ( x 1 , x 2 , , x n ) {\displaystyle F(x_{1},x_{2},\ldots ,x_{n})} называется алгебраической в точке A = ( a 1 , a 2 , , a n ) {\displaystyle A=(a_{1},a_{2},\ldots ,a_{n})} , если существует окрестность точки A {\displaystyle A} , в которой верно тождество

P ( F ( x 1 , x 2 , , x n ) , x 1 , x 2 , , x n ) = 0. {\displaystyle P(F(x_{1},x_{2},\ldots ,x_{n}),x_{1},x_{2},\ldots ,x_{n})=0.}

где P {\displaystyle P} есть многочлен от n + 1 {\displaystyle n+1} переменной.

Функция называется алгебраической, если она является алгебраической в каждой точке области определения.

Например, функция действительного переменного F ( x ) = 1 x 2 {\displaystyle F(x)={\sqrt {1-x^{2}}}} является алгебраической на интервале ( 1 , 1 ) {\displaystyle (-1,1)} в поле действительных чисел, так как она удовлетворяет уравнению

F 2 + x 2 = 1. {\displaystyle F^{2}+x^{2}=1.}

Существует аналитическое продолжение функции F ( x ) = 1 x 2 {\displaystyle F(x)={\sqrt {1-x^{2}}}} на комплексную плоскость, с вырезанным отрезком [ 1 , 1 ] {\displaystyle [-1,1]} или с двумя вырезанными лучами ( , 1 ] {\displaystyle (-\infty ,-1]} и [ 1 , ) {\displaystyle [1,\infty )} . В этой области полученная функция комплексного переменного является алгебраической и аналитической.

Известно, что если функция является алгебраической в точке, то она является и аналитической в данной точке. Обратное неверно. Функции, являющиеся аналитическими, но не являющиеся алгебраическими, называются трансцендентными.